
175

Compilation of Dynamic Sparse Tensor Algebra
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Many applications, from social network graph analytics to control flow analysis, compute on sparse data

that evolves over the course of program execution. Such data can be represented as dynamic sparse tensors

and efficiently stored in formats (data layouts) that utilize pointer-based data structures like block linked

lists, binary search trees, B-trees, and C-trees among others. These specialized formats support fast in-place

modification and are thus better suited than traditional, array-based data structures like CSR for storing

dynamic sparse tensors. However, different dynamic sparse tensor formats have distinct benefits and drawbacks,

and performing different computations on tensors that are stored in different formats can require vastly

dissimilar code that are not straightforward to correctly implement and optimize.

This paper shows how a compiler can generate efficient code to compute tensor algebra operations on

dynamic sparse tensors that may be stored in a wide range of disparate formats. We propose a language for

precisely specifying recursive, pointer-based data structures, and we show how this language can express

many different dynamic data structures, including all the ones named above as well as many more. We then

describe how, given high-level specifications of such dynamic data structures, a compiler can emit code to

efficiently access and compute on dynamic sparse tensors that are stored in the aforementioned data structures.

We evaluate our technique and find it generates efficient dynamic sparse tensor algebra kernels that have

performance comparable to, if not better than, state-of-the-art libraries and frameworks such as PAM, Aspen,

STINGER, and Terrace. At the same time, our technique supports a wider range of tensor algebra operationsÐ

such as those that simultaneously compute with static and dynamic sparse tensorsÐthan Aspen, STINGER,

and Terrace, while also achieving significantly better performance than PAM for those same operations.
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1 INTRODUCTION

Sparse matrices and tensors (i.e., multidimensional arrays) are commonly used to represent data in
many domains, including graph analytics [Mattson et al. 2013], machine learning [Park et al. 2016;
Rajbhandari et al. 2017], and many others. Countless formats for efficiently storing sparse tensors
in memory have been proposed [Baskaran et al. 2012; Dhulipala et al. 2019; Ediger et al. 2012; Li
et al. 2018; Liu and Vinter 2015; Monakov et al. 2010; Pandey et al. 2021; Smith and Karypis 2015],
and many of these formats are supported by widely used sparse linear/tensor algebra libraries like
Intel oneMKL [Intel 2020] and graph processing frameworks like Ligra [Shun and Blelloch 2013].
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Fig. 1. Examples of the same sparse matrix stored in CSR and as BSTs. Inserting a new nonzero 𝐼 into CSR

at coordinates (0, 2) requires shifting stored nonzeros in memory and may require reallocating the crd and

vals arrays. By contrast, inserting the same nonzero into a BST only requires allocating a new node.

Being able to efficiently compute with sparse tensors is crucial since real-world applications often
work with large data sets that can be represented as sparse tensors. As a result, lots of research
effort has been devoted to optimizing the performance of sparse tensor computations [Azad and
Buluç 2017; Bell and Garland 2008; Hong et al. 2019; Kjolstad et al. 2017; Smith et al. 2015; Zhang
et al. 2017]. High-performance libraries like oneMKL can efficiently compute with sparse tensors
by storing them in formats like compressed sparse row (CSR) that, as Figure 1b shows, use a fixed
number of arrays to compactly store nonzeros in memory. Such array-based formats provide good
cache spatial locality and are ideal for storing static sparse tensors that have fixed sparsity structures
(i.e., they do not gain or lose nonzeros over the course of an application’s execution). However,
it is generally inefficient to modify a tensor that is stored in a static sparse tensor format, since
this may require already-stored nonzeros to be moved around in memory.1 As Figure 1e shows, for
instance, inserting a nonzero into a CSR matrix requires all subsequent nonzeros to be shifted back
so that space can be made for the new nonzero. This incurs significant performance overhead.

However, many real-world applications need to work with dynamic sparse tensors, which have
constantly-evolving sparsity structures [Cheng et al. 2012; King et al. 2016]. For instance, a graph
that encodes friendship relations in a social network can be represented by a sparse tensor (i.e.,
its adjacency matrix). Such a tensor may need to be regularly updated by inserting new nonzeros
in order to reflect new friendships that are formed between users. To allow efficient modification
of dynamic sparse tensors, specialized formats for storing such tensors typically use pointers to
link together stored nonzeros. This makes it possible to, for instance, insert a new nonzero without
having to move already-stored nonzeros in memory. As an example, Figure 1c shows a dynamic
tensor format that stores each row of a tensor using a binary search tree (BST). Since nodes in a

1This problem could be avoided by storing the tensor in a dense array, which reserves space for all elements (including

zeros) in the tensor. Unfortunately, many real-world applications work with large tensors that, in order to be stored as

dense arrays, may require orders of magnitude more memory than is typically available. Additionally, for real-world tensors

that are highly sparse, storing them in dense arrays can significantly reduce compute performance [Kjolstad et al. 2017].
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BST do not have to be stored contiguously in memory, a new nonzero can be inserted by simply
allocating a new node and attaching it to the BST without moving any existing node in memory,
as Figure 1f shows. The main drawback of dynamic tensor formats is that they are typically less
efficient to compute with than static, array-based tensor formats, since pointer-based data structures
provide less spatial locality. Still, because converting a tensor between formats can incur significant
overhead [Xie et al. 2018], an application that must compute on dynamic sparse tensors can often
do so more efficiently by keeping the tensors stored in dynamic tensor formats.

There exist many distinct dynamic sparse tensor formats though, and they all possess different
trade-offs. A format that uses BSTs to store nonzeros, for instance, can be efficiently modified but
is also relatively inefficient to iterate over since its memory layout effectively provides no cache
spatial locality. Conversely, a format that uses blocked data structures like B-trees to store nonzeros
can be more efficiently accessed, since some nonzeros are stored close together in memory (which
increases spatial locality). For the same reason, however, such a format cannot be as efficiently
modified. Thus, to be able to support a wide range of applications that have different proportions
of data modification and compute, a sparse tensor algebra system must be able to efficiently work
with many disparate dynamic tensor formats.

1.1 Challenges of Supporting Dynamic Sparse Tensors

Unfortunately, existing libraries that work with dynamic sparse tensors (or dynamic graphs encoded
as sparse adjacency matrices) each typically only supports storing such tensors in a limited number
of formats. In order to effectively utilize any particular format, a library must be able to both
efficiently in-place modify and efficiently compute on tensors stored in that format. To support
modifying dynamic sparse tensors, a library essentially only needs a routine for inserting new
nonzeros into a tensor and a routine for deleting nonzeros from a tensor. Thus, a library can support
efficient in-place modification for a wide variety of formats by simply providing a bounded number
of optimized routines for each format, which library developers can reasonably implement.

On the other hand, supporting efficient computation with a wide variety of formats is significantly
more complicated. This is because there is effectively an unbounded number of operations that
users might want to compute, and each of these operations not only can have an arbitrary number
of operands but can also store those operands in distinct, arbitrary formats. As Figure 2 shows,
efficiently computing with dynamic sparse tensors can require code that vary significantlyÐand
that are all non-trivial to implement and optimize correctlyÐdepending on both the operation
being computed and the formats used to store dynamic sparse tensor operands. The result is a
combinatorial explosion of potential kernels that a library developer would have to implement in
order to support efficient computation with a wide range of dynamic sparse tensor formats. In turn,
this limits the number of formats that hand-optimized libraries can reasonably support in practice.

This motivates the need for a compiler-based technique that can instead automatically generate
efficient code to compute on dynamic sparse tensors stored in arbitrary formats. However, existing
sparse linear and tensor algebra compilers like TACO [Chou et al. 2018, 2020; Kjolstad et al. 2019,
2017] and MLIR [Bik et al. 2022] cannot readily, if at all, generate code to efficiently compute with
operands that are stored in a wide range of disparate dynamic sparse tensor formats.

1.2 Contributions

We propose the first technique that, given high-level specifications of a wide variety of dynamic
sparse tensor formats, can automatically generate tensor algebra kernels that efficiently compute
on sparse tensors stored in the aforementioned formats. In particular, we propose a language
for precisely specifying how nonzeros can be stored in recursive, pointer-based data structures
such as BSTs and linked lists, which compose to form many known dynamic tensor formats. We
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void map_b(blist* b, double* c, double& a) {

while (b) {

for (int32_t p = 0; p < b->B; p++) {

int32_t j = b->e[p].first;

a += b->e[p].second * c[j];

}

b = b->n;

}

}

void compute(...) {

for (int32_t i = 0; i < N; i++) {

double sum = 0.0;

map_b(b[i]->h, c, sum);

a[i] = sum;

}

}

(a) SpMV with matrix stored as block linked lists

void map_b(bst* b, double* c, double& a) {

if (b) {

if (b->l)

map_b(b->l, a, c);

int32_t j = b->e.first;

a += b->e.second * c[j];

if (b->r)

map_b(b->r, a, c);

}

}

void compute(...) {

for (int32_t i = 0; i < N; i++) {

double sum = 0.0;

map_b(b[i]->r, c, sum);

a[i] = sum;

}

}

(b) SpMV with matrix stored as BSTs

inline uint8_t

iter_bst(uint8_t state, bst*& n,

call_stack<uint8_t,bst*>& cs,

int32_t& c, double& v) {

if (state == 1)

goto iter_resume1;

cs.emplace(0, n);

while (!cs.empty()) {

n = get<1>(cs.top());

if (get<0>(cs.top()) == 1)

goto call_resume1;

while (n) {

if (n->l) {

get<0>(cs.top()) = 1;

get<1>(cs.top()) = n;

cs.emplace(0, n->l);

goto call_end;

call_resume1:;

}

c = n->e.first;

v = n->e.second;

return 1;

iter_resume1:

n = n->r;

}

cs.pop();

call_end:;

}

return 0;

}

inline uint8_t

iter_blist(uint8_t state, blist*& b,

int32_t& p, int32_t& c, double& v) {

if (state == 1)

goto iter_resume1;

while (b) {

for (p = 0; p < b->B; p++) {

c = b->e[p].first;

v = b->e[p].second;

return 1;

iter_resume1:;

}

b = b->n;

}

return 0;

}

void compute(...) {

...

for (int32_t i = 0; i < N; i++) {

bst* bn = b[i]->r;

blist* cn = c[i]->h;

uint8_t bs = iter_bst(0, bn, bstack, jb, bv);

uint8_t cs = iter_blist(0, cn, cp, jc, cv);

while (bs && cs) {

int32_t j = min(jb, jc);

if (j == jb && j == jc)

a[pa++] = bv * cv;

if (j == jb) bs = iter_bst(bs, ..., bv);

if (j == jc) cs = iter_blist(cs, ..., cv);

}

}

}

(c) Element-wise multiplication of a matrix stored as BSTs and a matrix stored as block linked lists

Fig. 2. Examples of different dynamic sparse tensor algebra kernels with operands stored in disparate formats.

As these examples demonstrate, efficiently computing with dynamic sparse tensors can require very different

code depending on the format used to store the tensors ((a) vs. (b)) as well as the computation ((a)/(b) vs. (c)).

Our technique is able to automatically generate all of these kernels.
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show how a compiler can use these specifications to generate iterators and map functions for the
aforementioned data structures, which can be invoked to efficiently compute on dynamic sparse
tensors. Additionally, we propose an abstract interface that captures how dynamic data structures
can be efficiently assembled, and we show how a compiler can use implementations of this interface
to generate tensor algebra kernels that store the results of computations in dynamic tensor formats.
In summary, our contributions include the

node schema language, which lets users precisely define a wide range of dynamic data structures
that can be used to store dynamic sparse tensors (Section 3.1); an

assembly abstraction that captures how dynamic data structures can be efficiently constructed
(Section 3.2); and

code generation techniques that, guided by the above abstractions, emit efficient code to com-
pute tensor algebra operations on dynamic sparse tensors (Section 4).

We implement our technique as a prototype extension to the TACO sparse tensor algebra
compiler, and our evaluation shows that our technique generates efficient dynamic sparse tensor
algebra kernels (Section 5). Code that our technique generates has performance comparable to,
if not better than, equivalent code that can be implemented using Aspen [Dhulipala et al. 2019],
STINGER [Ediger et al. 2012], and Terrace [Pandey et al. 2021], which are three state-of-the-art
dynamic graph processing frameworks. At the same time, our technique can generate code for
many tensor algebra computations that are not readily supported by the other aforementioned
frameworks, such as those that simultaneously compute with static and dynamic sparse tensors.
For these other computations, code that our technique generates can significantly outperform
PAM [Sun et al. 2018], which is a lower-level, parallel ordered key-value maps library that can be
used to also implement the same kernels.

2 BACKGROUND

In this section, we give a brief overview of some of the many formats that have been proposed
for storing dynamic sparse tensors. Additionally, we briefly describe the sparse tensor algebra
compilation techniques of Kjolstad et al. [2019, 2017] and Chou et al. [2018], which generate efficient
code that compute on static sparse tensors stored in array-based formats.

2.1 Dynamic Sparse Tensor Formats

There exist many formats for storing dynamic sparse tensors in memory, all of which possess
different trade-offs. Figure 3 shows several representative examples of these formats for two-
dimensional dynamic sparse tensors (i.e., matrices).

A standard way of storing a dynamic sparse matrix (such as the adjacency matrix of a dynamic
graph) is as a collection of adjacency lists, each of which stores the nonzeros in a single row
of a matrix. Each adjacency list can be stored as a linked list [Cormen et al. 2009], with each
node in the linked list storing the column coordinate and value of a nonzero (Figure 3b). This
representation enables new nonzeros to be efficiently added to a matrix by simply appending them
to the appropriate adjacency lists, which can be done without moving any existing nonzero in
memory. Additionally, the collection of adjacency lists may itself be stored as a linked list, forming
the list of lists representation; this enables new rows to be efficiently added to a matrix as well.

One drawback with linked lists though is that, when iterating over stored nonzeros, each access
can potentially incur a cachemiss, since nodes in a linked list are typically not be stored contiguously
in memory. This increases the overhead of accessing nonzeros, which reduces performance when
computing with dynamic tensors that are stored as linked lists. To address this limitation, some
high-performance graph processing frameworks such as STINGER [Ediger et al. 2012] instead
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(f) Variable block linked list
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(g) B-tree

Fig. 3. Examples of disparate dynamic sparse tensor formats (bśg) storing the same tensor (a).

use block linked lists that store multiple nonzeros in each node (Figure 3c), which amortizes the
overhead of each node access. In a typical block linked list, every node contains an array of the same
size and is able to store the samemaximum number of nonzeros. However, some frameworks such as
GraphOne [Kumar and Huang 2019] use variable block linked lists that allow different nodes to have
arrays of different sizes, enabling nodes to store different maximum numbers of nonzeros (Figure 3f).
This allows updates to be efficiently batched, with every batch of new nonzerosÐregardless of the
size of the batchÐinserted as just a single new node.
Another way of representing a dynamic sparse matrix is to store the set of non-empty rows

using a (balanced) binary search tree and additionally store each row’s nonzeros using a separate
BST (Figure 3d) [Dhulipala et al. 2019]. A benefit of using BSTs to store nonzeros is that it enables
new nonzeros to be efficiently inserted while also keeping the data structure sorted. This is useful
for computations that require accessing nonzeros in order. Again though, to amortize the overhead
of accessing nodes in a tree, many high-performance graph processing frameworks instead use
block tree data structures that store multiple nonzeros in each node. For instance, Aspen [Dhulipala
et al. 2019] represents each row of a dynamic graph’s adjacency matrix using a C-tree, which
stores only a subset of nonzeros (i.e., heads) directly in a BST (Figure 3e). The remaining nonzeros,
meanwhile, are stored in either a prefix (which contains all nonzeros that have smaller coordinates
than any head element) or in chunks (i.e., tails) that are each associated with a distinct head element.
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Similarly, Terrace [Pandey et al. 2021] supports storing each row of an adjacency matrix using
B-trees, which generalize BSTs in a different way by allowing each node to store more than two
children in addition to storing multiple nonzeros (Figure 3g).

2.2 Sparse Tensor Algebra Compilation

Our technique builds on the techniques of Kjolstad et al. [2019, 2017] and Chou et al. [2018], which
are implemented in the TACO sparse tensor algebra compiler. TACO’s code generator takes as
input a tensor algebra computation expressed in concrete index notation, which specifies how each
element in the output tensor should be computed in terms of elements in the input tensors. (For
example, matrix addition can be expressed in concrete index notation as ∀𝑖∀𝑗 𝐴𝑖 𝑗 = 𝐵𝑖 𝑗 +𝐶𝑖 𝑗 , which
specifies that each element in the output tensor 𝐴 is the sum of the corresponding elements in the
input tensors 𝐵 and 𝐶 .) Given such a concrete index notation statement, TACO’s code generator
can recursively lower it to imperative code by emitting one or more loops to iterate over each
dimension. So to generate code that computes matrix addition, for instance, the code generator first
emits one or more loops to iterate over all rows of 𝐵 and 𝐶 (i.e., dimension 𝑖). Then, within each
emitted loop over the rows of 𝐵 and 𝐶 , the code generator emits one or more loops to iterate over
all columns (i.e., dimension 𝑗 ) within a row in order to compute the element-wise sum of that row.
To generate code that computes with sparse tensors stored in specific formats though, TACO

additionally requires the user to specify the format of each input and output tensor. Chou et al. show
how a wide range of static, array-based sparse tensor formats can be expressed as compositions of
level formats, each of which stores a dimension of a tensor. The CSR format shown in Figure 1b, for
instance, can be expressed as a composition of the dense and compressed level formats, which store
the row and column dimensions respectively. The dense level format uses a single scalar variable N

to encode a dense set of rows with coordinates from 0 to 𝑁 − 1, while the compressed level format
uses a pos array and a crd array to store the column coordinates of each row’s nonzeros. Both level
formatsÐand all other level formatsÐimplement snippets of imperative code that precisely describe
how their underlying data structures can be accessed or assembled. This lets TACO’s code generator
emit efficient code to compute with tensors in specific formats by inlining the aforementioned code
snippets into the generated loops.

3 DYNAMIC TENSOR FORMAT ABSTRACTIONS

In the same way that static tensor formats can be expressed as compositions of per-dimension
level formats (as summarized in Section 2.2), dynamic tensor formats can also be expressed as
compositions of per-dimension formats by generalizing level formats to support dynamic, pointer-
based data structures. Assume, for instance, we can define new level formats like bst, ctree, and
blist that use BSTs, C-trees, and block linked lists to store a tensor dimension, respectively. We can
then express Aspen’s adjacency matrix representation (Figure 3e) as (bst, ctree), indicating that the
set of non-empty rows are stored using a BST while the set of non-zero columns for each row are
stored using a C-tree. A tensor format may also be composed of level formats that use both static
(array-based) and dynamic data structures. For example, the composition (dense, blist) describes a
tensor format that stores a matrix as a dense array of block linked lists, each of which stores a row
of the matrix (Figure 3c); this format is akin to STINGER’s adjacency matrix representation.
In the rest of this section, we show how to precisely define level formats that store tensor

dimensions using dynamic data structures. In particular, we propose a new language that we call
the node schema language, and we show how a user can use this language to precisely specify how
a dynamic data structure stores nonzeros (or non-empty subtensors) in memory (Section 3.1). We
also show how, by implementing a common abstract interface that we define, a user can precisely
specify how dynamic data structures are assembled (Section 3.2). As Section 4 will show, these
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⟨node_schema⟩ ::= ⟨supertype_def ⟩∗ ⟨node_def ⟩+

⟨supertype_def ⟩ ::= ‘def’ ‘supertype’ ⟨name⟩

⟨node_def ⟩ ::= ‘def’ ⟨name⟩ [‘:’ ⟨name⟩] ‘{’ ⟨field_def ⟩+ [⟨sequence_def ⟩] ‘}’

⟨field_def ⟩ ::= ⟨name⟩ ‘:’ ⟨type⟩

⟨type⟩ ::= ⟨elem_type⟩ | ⟨child_type⟩ | ⟨size_type⟩ | ⟨metadata_type⟩ | ‘parent’

⟨elem_type⟩ ::= ‘elem’ [⟨array_type⟩] [‘nonempty’]

⟨child_type⟩ ::= ⟨name⟩ [⟨array_type⟩] [‘nonempty’]

⟨array_type⟩ ::= ‘[’ (⟨name⟩ | ⟨const⟩) ‘]’

⟨size_type⟩ ::= ‘size’ [‘in’ ⟨array_size⟩]

⟨array_size⟩ ::= ‘[’ ⟨const⟩ ‘,’ (⟨const⟩ | ‘*’) ‘]’

⟨metadata_type⟩ ::= ‘bool’ | ‘int8’ | ‘uint8’ | ‘int16’ | ‘uint16’ ...

⟨sequence_def ⟩ ::= ‘seq’ ‘=’ ⟨seq_entry⟩ (‘,’ ⟨seq_entry⟩)∗

⟨seq_entry⟩ ::= ⟨name⟩ | ‘{’ ⟨name⟩ (‘,’ ⟨name⟩)∗ ‘}’

Fig. 4. Syntax of the node schema language.

def bst_root {
    r : bst
}

def bst {
    e : elem nonempty
    l : bst
    r : bst
    seq = l, e, r
}

6: N1: F

3: H

Fig. 5. The node schemas for a BST precisely specifies how nonzeros are stored in nodes of a BST and how

these nodes are linked together.

specifications enable our technique to generate efficient code for computing on sparse tensors that
are stored in dynamic tensor formats.

3.1 Node Schema Language

A wide range of dynamic tensor data structures, including all those described in Section 2.1, can
be modeled as collections of nodes that are stored non-contiguously in memory, with each node
storing a subset of nonzeros. To precisely define any dynamic data structure, our technique requires
a user to provide schemas of the data structure’s nodes, which specify how stored nonzeros are
distributed amongst the nodes and how nodes are linked together. These schemas can be expressed
using the node schema language, the syntax for which is provided in Figure 4.

The node schema language allows users to define nodes that can contain an arbitrary number of
fields. Each field may store nonzeros (or, more generally, non-empty subtensors) or store references
to other nodes. As an example, Figure 5 shows how binary search trees can be precisely defined
using the node schema language. In particular, a binary search tree consists of two types of nodes: a
bst_root node, which simply stores a reference to the root of the tree, and bst nodes, which actually
contain the nonzeros. The schema for bst nodes specifies that each node stores one nonzero e

as well as stores references to up to two child nodes l and r, both of which are of the same type.
(The nonempty annotation specifies that each node must store exactly one nonzero and cannot be
empty.) Furthermore, the schema contains a sequence attribute (seq) that specifies the ordering
of nonzeros stored by all reachable nodes; in particular, all nonzeros reachable from l must have
smaller coordinates than e, which in turns must have a smaller coordinate than all nonzeros

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 175. Publication date: October 2022.



Compilation of Dynamic Sparse Tensor Algebra 175:9

def list {

e : elem nonempty

n : list

seq = {e}, n

}

def list_head {

h : list

}

(a) Linked list

def blist {

e : elem[B] nonempty

n : blist

B : size in [0, 3]

seq = {e}, n

}

def blist_head {

h : blist

}

(b) Block linked list

def vblist {

e : elem[B] nonempty

n : vblist

B : size

}

def vblist_head {

h : vblist

}

(c) Variable block linked list

def ttree {

e : elem[B] nonempty

l : ttree

r : ttree

B : size in [1, 5]

seq = l, {e}, r

}

def ttree_root {

r : ttree

}

(d) T-tree

def rbtree {

e : elem nonempty

l : rbtree

r : rbtree

p : parent

c : bool

seq = l, e, r

}

def rbtree_root {

r : rbtree

}

(e) Red-black tree

def tree {

h : elem nonempty

t : chunk

l : tree

r : tree

seq = l, h, t, r

}

def chunk {

e : elem[N] nonempty

N : size

seq = {e}

}

def ctree {

p : chunk

r : tree

seq = p, r

}

(f) C-tree

def supertype btree

def btree_internal : btree {

e : elem[B] nonempty

cf : btree nonempty

cr : btree[B] nonempty

B : size in [1, 3]

seq = cf, {e, cr}

}

def btree_leaf : btree {

e : elem[B] nonempty

B : size in [1, 3]

seq = {e}

}

def btree_root {

r : btree

}

(g) B-tree

def hybrid {

e : elem[B] nonempty

r : btree

B : size in [0, 5]

seq = {e}, r

}

(h) Fixed-size array/B-tree hybrid

Fig. 6. Node schemas for a wide range of dynamic data structures, including all those in Figure 3.

reachable from r. Meanwhile, the schema for the bst_root node simply specifies that it stores a
reference to the root node r, which may be null if the tree is empty.

The node schema language assumes, by default, that any data structure being defined is acyclic.
This means that, for instance, while a bst node may store references to child nodes of the same
type, it cannot have an ancestor node as its child. (That said, as Figure 6e demonstrates, one can
define a variant of BSTs that stores a reference to each node’s parent node in a parent field. As
the example also highlights though, a node’s sequence attribute may not constrain the ordering of
nonzeros that are stored in the parent node.)

Nodes in a dynamic data structure may be defined to store more than one nonzero. For instance,
Figure 6d shows how T-trees [Lehman and Carey 1986], which generalize BSTs by having each
node store a bounded-size block of nonzeros, can be precisely defined. The schema for ttree nodes
specifies that each node can store multiple nonzeros contiguously in an array e, with the exact
number of nonzeros that e contains being stored in a separate field B. Different nodes may store
different numbers of nonzeros, but the in clause (in the declaration of the B field) constrains each
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def blist {

e : elem[B]

n : blist

B : size in [0, 3]

seq = {e}, n

}

0: C

-1 4: D

(a) With slots possibly being empty or stor-

ing nonzeros up to position B in each block

def blist {

e : elem[3]

n : blist

seq = {e}, n

}

0: C -1 -1

-1 4: D -1

(b) With all slots possibly being

empty or storing nonzeros

def blist {

e : elem[3]

n : blist

}

4: D 3: A -1

0: C -1 1: E

(c) With nonzeros unsorted

(by coordinates)

Fig. 7. The node schema language can describe many variants of block linked lists. In the subfigures above,

unlabeled slots are those that, at run time, can automatically be assumed to not store any nonzero (i.e., must

be empty) and can therefore be skipped when iterated over. Slots labeled "-1", on the other hand, might store

nonzeros (i.e., are only possibly empty) and must therefore be explicitly checked when iterated over.

node to contain between one to four nonzeros. As with BSTs, the sequence attribute specifies that
all nonzeros stored in a node (in array e) have larger coordinates than all nonzeros stored in the left
subtree l but smaller coordinates than all nonzeros stored in the right subtree r. Additionally though,
the {e} term in the sequence attribute indicates that nonzeros are stored within e in increasing order
of their coordinates. This means e[0] stores the nonzero with the smallest coordinate, e[1] stores
the nonzero with the second-smallest coordinate, and so on. More generally, a sequence attribute
term enclosed within braces may reference multiple arrays, indicating that the array elements
are ordered in interleaving order. So, for instance, the {e, cr} term in the sequence attribute for
internal nodes of B-trees (Figure 6g) indicates that e[0] has a smaller coordinate than all nonzeros
stored in the subtree cr[0], which in turn all have smaller coordinates than e[1], and so on.

Annotations to node schemas and their fieldsÐincluding nonempty annotations as well as sequence
attributesÐare strictly optional, making it possible to define many practical variants of a dynamic
data structure. Figures 6b and 7, for instance, show how the node schema language can be used to
define four variants of block linked lists, each of which pads blocks and orders stored nonzeros in a
different way. Similarly, Figure 6f shows how a declaration of a size field can omit the in clause,
indicating that the size of an array field is unconstrained. This makes it possible to precisely define
a C-tree, which, unlike T-trees, does not strictly bound the number of nonzeros stored in each node.

A dynamic data structure may further be defined to consist of multiple types of nodes that store
nonzeros in different ways. Figure 6f demonstrates, for instance, how C-trees can be expressed in
the node schema language by defining two types of nodesÐtree and chunkÐfor storing nonzeros.
In particular, tree nodes organize all of the head elements into a BST, with each node storing a
single head element in its h field. Meanwhile, each chunk node uses a single array e to store either
the C-tree’s prefix or all tail elements that correspond to a particular head element.

While different types of nodes may possess different sets of fields, they can nevertheless share a
common supertype, which allows a single reference to point to a node that can be of one of several
different types. For instance, B-trees consist of two types of nodes: internal nodes, which need to
store references to child nodes, and leaf nodes, which can omit those references to reduce space
usage. As Figure 6g shows, by defining internal nodes (btree_internal) and leaf nodes (btree_leaf)
to be of the same supertype btree, a user can specify that each child of an internal node may itself
be another internal node or, alternatively, be a leaf node.

Finally, the node schema language allows users to specify that nodes store additional metadata,
which may not be strictly needed to store nonzeros but are useful for other purposes. For instance,
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1 st = {

2 node : blist

3 };

4
5 append_first(elem, st, ret):

6 blist* node = new blist;

7 node->e[0] = elem;

8 node->B = 1;

9 node->n = null;

10 ret->h = node;

11 st->node = node;

12
13 append_rest(elem, st):

14 blist* node = st->node;

15 if (node->B == 2) {

16 node = new blist;

17 node->B = 0;

18 node->n = null;

19 st->node->n = node;

20 st->node = node;

21 }

22 node->e[node->B] = elem;

23 node->B += 1;

(a) Append for block linked lists

1 build_rbt(elems, s, e):

2 if (s > e)

3 return null;

4 rbtree* node = new rbtree;

5 uint64 m = (s + e) / 2;

6 node->e = elems[m];

7 node->p = null;

8 node->c = (s + 1 == e);

9 if (s == e) {

10 node->l = null;

11 node->r = null;

12 } else if (s + 1 == e) {

13 node->l = build_rbt(elems, s, s);

14 node->r = null;

15 node->l->p = node;

16 } else {

17 node->l = build_rbt(elems, s, m - 1);

18 node->r = build_rbt(elems, m + 1, e);

19 node->l->p = node;

20 node->r->p = node;

21 }

22 return node;

23
24 build(elems, sz, ret):

25 ret->r = build_rbt(elems, 0, sz - 1);

(b) Bulk assembly for red-black trees

Fig. 8. Examples of how our assembly abstraction can be implemented for various dynamic data structures.

Figure 6e shows how a node in a red-black tree can be defined to store a reference to its parent (in
field p) as well as store another field c that represents the node’s color; these fields are needed to
support efficient insertions into a red-black tree while keeping the tree balanced.

3.2 Assembly Abstract Interface

To support generating sparse tensor algebra kernels that store results in dynamic tensor formats,
our technique additionally requires users to implement an abstraction that captures how dynamic
data structures are efficiently assembled. Specifically, for any dynamic data structure, a user must
specify how nonzeros can be individually appended to the data structure and/or specify how the
data structure can be bulk assembled from a set of nonzeros.
Appends to a dynamic data structure are defined by two functions in our abstraction:

• append_first(elem, st, ret);

• append_rest(elem, st);

append_first defines how the first nonzero can be appended to the data structure, while append_rest
defines how all subsequent nonzeros can be appended (in order of their coordinates, if the data
structure is specified by sequence attributes to be sorted). Both functions take as arguments the
nonzero to be appended (elem) as well as a reference to a user-defined object (st) that can be utilized
to keep track of where exactly a nonzero was last appended in the data structure being assembled.
Additionally, append_first takes as input a reference to a preallocated node (ret) that is intended
to serve as a handle to the data structure being assembled. Figure 8a demonstrates how the append
functions can be implemented for one specific dynamic data structure, namely block linked lists.
To append the first new nonzero, append_first for block linked lists allocates a block, stores the
nonzero at the beginning of the block, and initializes the root pointer (ret->h) to point to the block.
For each subsequent new nonzero, append_rest then simply appends the new nonzero to the end
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of the last allocated block (which is cached in st) unless the block is already full, in which case a
new block is first allocated and attached to the end of the list.
Bulk assembly of a dynamic data structure, on the other hand, is defined by a single function:

• build(elems, sz, ret);

elems represents the sequence of nonzeros to be inserted, sz stores the size of elems, and ret is again
a reference to a preallocated node that is intended to serve as a handle to the data structure being
assembled. The argument elems implements an array interface, so any nonzero can be accessed by
their position in the sequence. Additionally, if the data structure being assembled is specified to be
sorted (i.e., if stored nonzeros are ordered by a sequence attribute), then the nonzeros in elems are
guaranteed to be ordered by their coordinates. Figure 8b shows how a user can implement the build
function for red-black trees. Bulk assembly can often be implemented more efficiently than appends.
In the case of red-black trees, for instance, bulk assembly can be performed without needing to
rebalance the tree after inserting each nonzero, which by contrast is needed when appending
to red-black trees. Bulk assembly is also typically more amenable to parallelization; for example,
the implementation of build in Figure 8b can be trivially parallelized by having recursive calls to
build_rbt be spawned in parallel. However, bulk assembly requires the set of inserted nonzeros
(elems) to be fully precomputed, which for some computations may incur additional overhead.

4 CODE GENERATION

In this section, we describe howwe generalize the techniques of Kjolstad et al. [2019, 2017] and Chou
et al. [2018] to generate efficient code that compute on tensors stored in arbitrary combinations of
dynamic and static tensor formats. Like the technique of Kjolstad et al., which was summarized in
Section 2.2, our technique takes as input a tensor algebra computation expressed in concrete index
notation and recursively emits imperative (C++) code to iterate (or map) over each dimension of
the operands. The remainder of this section will thus focus on how our technique emits code to
efficiently compute on tensors along just one dimension. In particular, we show how our technique
can use the abstractions we propose in Section 3 to generate code that may be optimized in very
different ways for different computations and operand formats. The result is a system that reduces
the effort needed to efficiently work with dynamic sparse tensors.

4.1 Generating Node Type Declarations

Before generating code to compute on dynamic sparse tensors, our technique first emits code to
declare structs that represent nodes of dynamic data structures and that the generated compute
code can actually work with. These structs are directly generated from node schemas, with one
struct generated for each node schema. Figure 9 shows examples of structs that our technique
generates for storing some of the dynamic data structures defined in Section 3.1.
Table 1 shows how our technique translates scalar fields in a node schema to fields in the

corresponding struct. Array fields are translated in a similar way, except each emitted field is either
an array member (e.g., int32_t f[4]) or a pointer into an array (e.g., int32_t* f). By default, array
fields are translated to pointers into arrays that can be allocated separately from their containing
struct. However, if an array field’s size is either a constant N or upper-bounded by an in clause to
be N, then the field is instead translated to an array member of size N. This reduces the overhead of
accessing the array at run time by eliminating an indirection. Additionally, if a node only has one
array field with an unbounded size, then our technique similarly translates the field to a zero-length
array member2 that stores its elements contiguously with the other fields of the node.

2Zero-length array members are not technically permitted in standard C++, though they are supported in practice by most

C++ compilers (including GCC and LLVM for instance) as extensions.
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struct bst {

pair<int32_t,double> e;

bst* r;

bst* l;

};

(a) BST

struct blist {

pair<int32_t,double> e[3];

blist* n;

int32_t B;

};

(b) Block linked list

struct btree {

enum type { btree_internal, btree_leaf };

type tp;

};

struct btree_internal : public btree {

pair<int32_t,double> e[3];

btree* cf;

btree* cr[3];

int32_t B;

};

struct btree_leaf : public btree {

pair<int32_t,double> e[3];

int32_t B;

};

(c) B-tree

Fig. 9. Examples of structs that our technique emits for storing various dynamic data structures.

Table 1. Translation of (scalar) fields in a node schema to fields in the corresponding emitted struct.

Field in Schema Field in Emitted Struct Notes

f : elem pair<int32_t,V> f

First element of emitted pair stores coordinate of nonzero (or -1 if no nonzero

is stored). Second element of emitted pair stores value of nonzero or pointer

to data structure storing a subtensor.

f : node_type node_type* f

f : size int32_t f

f : parent T* f T is struct type being emitted (or its supertype, if applicable).

f : bool bool f

f : [u]intN [u]intN_t f N ∈ {8, 16, 32, 64}

Finally, to support having different types of node share a common supertype, our technique
emits a struct for each supertype T, and all other emitted structs that correspond to T’s subtypes
inherit from T’s struct. This struct contains a single member tp, which stores an enumeration that
is intended for keeping track of a node’s actual type at run time.

4.2 Generating Compute Code

From node schemas that describe how dynamic data structures store nonzeros, our technique can
directly generate efficient code to compute on sparse tensors that are stored in those data structures.
As we will see, such an approach enables our technique to generate code that are optimized in
distinct ways for different computations and operand formats.

4.2.1 Generating Map Functions. If a computation on some tensor 𝑇 is guaranteed to produce an
output whose sparsity structure is a subset of 𝑇 ’s sparsity structure, then the computation can
be performed by simply mapping over and computing with each of 𝑇 ’s nonzeros. This is always
the case for multiplicative computations such as element-wise vector multiplication (∀𝑖 𝑎𝑖 = 𝑏𝑖𝑐𝑖 ),
since multiplication produces a non-zero result only if all operands are also non-zero. Thus, when
one operand of a multiplicative computation is stored in a dynamic data structure while the rest
are stored in formats (such as dense arrays) that support efficient random access of nonzeros, our
technique emits code that map over the dynamic data structure to perform the computation.
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emit_map(iv, expr, b):
  body := lower(expr, b)  # emit code to compute expr

  V := ...  # data type of elements in tensor b
  vars = ...  # variables referenced by body
  params := [", typeof(v) v" foreach v in vars].join()
  args := [", v" foreach v in vars].join()

  foreach schema in tensor b’s node schemas:
    T := ...  # node type declared by schema
    emit       "void map_b(T* b params) {"
    emit         "if (b) {"
    if schema is a supertype:
      foreach aschema in tensor b’s node schemas:
        S := ...  # node type declared by aschema
        if S is subtype of T:
          emit     "if (b->tp == T::S)”
          emit       "map_b((S*)b args);"
    else:
      foreach term in schema’s sequence attribute:
        if term is a field:
          if term is an elem field:
            emit   "{"
            emit     "int32_t iv = b->term.first;"
            emit     "V v = b->term.second;"
            if term is not nonempty:
              emit   "if (iv != -1) {"
            emit       "body"
            if term is not nonempty:
              emit   "}"
            emit   "}"
          else:  # term is a child field
            if term is not nonempty:
              emit "if (b->term)"
            emit     "map_b(b->term args);"
        else:  # term is a set of array fields
          if size of array fields is constant N:
            bnd := N
          else:
            sz := ... # field storing size of arrays
            bnd := "b->sz"
          emit     "for (int32_t p = 0; p < bnd; p++) {"
          foreach entry in term:
            if entry is an elem field:
              emit   "{"
              emit     "int32_t iv = b->entry[p].first;"
              emit     "V v = b->entry[p].second;"
              if entry is not nonempty:
                emit   "if (iv != -1) {"
              emit       "body"
              if entry is not nonempty:
                emit   "}"
              emit   "}"
            else:  # entry is a child field
              if entry is not nonempty:
                emit "if (b->entry[p])”
              emit     "map_b(b->entry[p] args);"
          emit     "}"
    emit         "}"
    emit       "}"

Fig. 10. Algorithm for generating sequential code that

maps over nonzeros in operand tensor 𝑏 to compute

the concrete index notation statement ∀𝑖𝑣 𝑒𝑥𝑝𝑟 . The

algorithm assumes that each node schema contains a

sequence attribute; if there is not one, the algorithm

emits code for each field in the order they are declared

in the node schema. The algorithm also does not show

tail call optimization applied.

emit_iterator(b):
  V := ...  # data type of elements in tensor b

  foreach schema in tensor b’s node schemas:
    T := ...  # node type declared by schema
    emit       "pair<int32_t,V> iter_T(T* b) {"
    emit         "if (b) {"
    if schema is a supertype:
      foreach aschema in tensor b’s node schemas:
        S := ...  # node type declared by aschema
        if S is subtype of T:
          emit     "if (b->tp == T::S)”
          emit       “yield iter_S((S*)b);”
    else:
      foreach term in schema’s sequence attribute:
        if term is a field:
          if term is an elem field:
            if term is not nonempty:
              emit "{"
              emit   "int32_t i = b->term.first;"
              emit   "if (i != -1)"
            emit       "yield b->term;"
            if term is not nonempty:
              emit "}"
          else:  # term is a child field
            if term is not nonempty:
              emit "if (b->term)"
            S := ...  # node type of term
            emit     "yield iter_S(b->term);"
        else:  # term is a set of array fields
          if size of array fields is constant N:
            bnd := N
          else:
            sz := ... # field storing size of arrays
            bnd := "b->sz"
          emit     "for (int32_t p = 0; p < bnd; p++) {"
          foreach entry in term:
            if entry is an elem field:
              if entry is not nonempty:
                emit "{"
                emit   "int32_t i = b->entry[p].first;"
                emit   "if (i != -1)"
              emit       "yield b->entry;”
              if entry is not nonempty:
                emit "}"
            else:  # entry is a child field
              if entry is not nonempty:
                emit "if (b->entry[p])”
              S := ...  # node type of entry
              emit     "yield iter_S(b->entry[p]);”
          emit     "}"
    emit         "}"
    emit       "}"

Fig. 11. Algorithm for generating unoptimized itera-

tors that enumerate nonzeros of any tensor stored in

the same format as tensor 𝑏.

To generate sequential code that maps over a dynamic data structure and performs some specific
computation on the stored nonzeros, our technique applies the algorithm shown in Figure 10. Our
technique emits a map function for every type of node in the data structure. Figure 12a shows an
example map function that our technique generates for mapping over nodes in a binary search
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1 void map_b(bst* b, double* a, double* c) {

2 if (b) {

3 if (b->l)

4 map_b(b->l, a, c);

5 int32_t i = b->e.first;

6 a[i] = b->e.second * c[i];

7 if (b->r)

8 map_b(b->r, a, c);

9 }

10 }

(a) Sequential map over BST

1 void map_b(blist* b, double* a, double* c) {

2 while (b) {

3 for (int32_t p = 0; p < b->B; p++) {

4 int32_t i = b->e[p].first;

5 a[i] = b->e[p].second * c[i];

6 }

7 b = b->n;

8 }

9 }

(b) Sequential map over block linked list

1 void map_b(bst* b, double* a,

2 double* c, uint8_t d) {

3 if (b) {

4 if (d != 0) {

5 if (b->l)

6 #pragma omp task

7 map_b(b->l, a, c, d - 1);

8 if (b->r)

9 #pragma omp task

10 map_b(b->r, a, c, d - 1);

11 int32_t i = b->e.first;

12 a[i] = b->e.second * c[i];

13 } else {

14 map_b(b, a, c);

15 }

16 }

17 }

(c) Parallel map over BST

1 void map_b(blist* b, double* a, double* c) {

2 while (b) {

3 #pragma omp task

4 for (int32_t p = 0; p < b->B; p++) {

5 int32_t i = b->e[p].first;

6 a[i] = b->e[p].second * c[i];

7 }

8 b = b->n;

9 }

10 }

(d) Parallel map over block linked list

Fig. 12. Examples of map functions that our technique generates. Note that Cilk-parallelized code can be

similarly generated by replacing OpenMP pragmas with Cilk keywords.

tree and computing element-wise vector multiplication. Each emitted function accesses all elem
fields in the input node and, for each stored nonzero, performs the specified computation with
the nonzero (lines 5ś6 in Figure 12a). If the input node contains references to child nodes, then
the emitted function must also compute on nonzeros that are stored in those child nodes (and
their descendants). In the general case, this is done by (recursively) invoking the appropriate map
function to process the child nodes (lines 3ś4 and 7ś8 in Figure 12a). By default, as demonstrated
in Figure 12a, our technique emits sequential code that computes on stored nonzeros in coordinate
order as specified by the input node’s sequence attribute. However, if the input node does not
provide a sequence attribute, then our technique instead simply emits code that processes the input
node’s fields in the order they are declared in the node schema.

The above approach generates correct code for any dynamic data structure that can be expressed
using the node schema language. However, for data structures that do not exhibit any fanout (i.e.,
those comprised of nodes that have exactly one child each, such as linked lists), code that the above
approach generates is prone to fail due to stack overflow when the input data structure contains
many nodes. Thus, for any type of node that has exactly one child of the same type, our technique
applies tail call optimization to instead emit a map function that uses a loop to iterate over all of
the input node’s descendants. (Our technique can trivially determine if a type of node has exactly
one child of the same type by inspecting its schema.) Figure 12b shows an example of code that our
technique emits for mapping over a block linked list using this approach.
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Our technique also emits parallelized map functions in a similar way as sequential map functions.
For any input node that has exactly one child of the same type though (e.g., block linked list nodes),
our technique emits code to process the node and its descendants in parallel by spawning tasks that
each computes on a single node’s stored nonzeros (lines 3ś7 in Figure 12d). Meanwhile, for any
other type of input node, our technique emits code to process the node’s descendants in parallel
by spawning tasks that each maps over a single child node and its descendants (lines 5ś10 in
Figure 12c). To avoid spawning too many fine-grained tasks, the emitted code keeps track of the
depth of recursion (parameter d in Figure 12c) and, once a certain depth has been reached, switches
back to a sequential version of the map function (lines 13ś14 in Figure 12c).

Finally, to support mapping over nodes that share a common supertype but whose actual types
are not known at compile time, our technique additionally emits a map function for every supertype.
Each such map function simply checks the input node’s type at run time and then invokes the
corresponding map function to actually compute on the input node. So to map over a child of a
B-tree node, for instance, the generated code would invoke a map function that takes any instance
of btree as input. This function would then invoke a second map function (which performs the
actual computation) that only takes an instance of either btree_internal or btree_leaf as input,
depending on if the child is an internal node (i.e., if tp == btree::btree_internal) or a leaf node.

4.2.2 Generating Iterators. In general though, computing a sparse tensor algebra operation may
require simultaneously iterating over multiple operands that are all stored in dynamic data struc-
tures. Such computations are not readily supported by recursive map functions like those described
previously. So to support these computations, our technique instead emits code that uses some
set of loops to iterate over intersections or unions of the operands’ nonzeros and compute on
those nonzeros. Figure 2c shows an example of such code. Kjolstad et al. [2017] and Henry et al.
[2021] describe how a compiler can generate loops that iterate over intersections or unions of
sparse tensor operands, assuming it is possible to enumerate the stored nonzeros of each operand.
However, while Chou et al. [2018] show how code that performs such enumeration can be emitted
for operands that are stored in static, array-based formats, their technique does not supportÐand
does not readily generalize toÐdynamic, pointer-based sparse tensor formats.

To generate an iterator that efficiently enumerates stored nonzeros in a dynamic data structure,
our technique first mechanically emits a (recursive) coroutine for every type of node that may be
contained in the data structure. This is done by applying the algorithm in Figure 11. Figure 13a
shows an example coroutine that our technique generates for iterating over a BST. Each emitted
coroutine accesses all of the input node’s stored nonzeros and child nodes in the order specified by
the input node’s sequence attribute. For each nonzero, the emitted code simply yields the coordinate
and value of that nonzero (line 5 in Figure 13a). For each child node, on the other hand, the emitted
code (recursively) invokes the appropriate coroutine to yield all nonzeros that are stored in the
child node and its descendants (lines 3ś4 and 6ś7 in Figure 13a).

Our technique then applies a set of optimizations to each emitted coroutine in order to obtain an
optimized iterator. First, our technique applies tail call optimization in order to reduce the number
of recursive calls. Additionally, if the input node has child nodes of other types, all invocations of
iterators for those nodes are inlined, yielding a coroutine that only has recursive calls to itself. Then,
to eliminate the overhead of recursive calls to a coroutine, our technique rewrites the coroutine so
that it emulates recursion using a loop with an explicit call stack. This stack stores the local variables
and state of each recursive call. Finally, to obtain code that does not rely on language support
for coroutines (and can thus be compiled with pre-C++20 compilers or even straightforwardly
translated to C), our technique rewrites the coroutine to a function that, when invoked, yields the
next nonzero’s coordinate and value as output parameters. Figure 13 show how our technique
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1 pair<int32_t,double> iter_bst(bst* n) {

2 if (n) {

3 if (n->l)

4 yield iter_bst(n->l);

5 yield n->e;

6 if (n->r)

7 yield iter_bst(n->r);

8 }

9 }

(a) Unoptimized iterator

1 pair<int32_t,double> iter_bst(bst* n) {

2 while (n) {

3 if (n->l)

4 yield iter_bst(n->l);

5 yield n->e;

6 n = n->r;

7 }

8 }

(b) After tail call optimization

1 pair<int32_t,double> iter_bst(bst* n) {

2 call_stack<uint8_t,bst*> cs;

3 cs.emplace(0, n);

4 while (!cs.empty()) {

5 n = get<1>(cs.top());

6 if (get<0>(cs.top()) == 1)

7 goto call_resume1;

8 while (n) {

9 if (n->l) {

10 get<0>(cs.top()) = 1;

11 get<1>(cs.top()) = n;

12 cs.emplace(0, n->l);

13 goto call_end;

14 call_resume1:;

15 }

16 yield n->e;

17 n = n->r;

18 }

19 cs.pop();

20 call_end:;

21 }

22 }

(c) After recursion elimination

Fig. 13. Steps involved in generating an optimized iterator for BSTs. The final code is shown in Figure 2c.

applies these optimizations to the unoptimized code in Figure 13a in order to generate an efficient
iterator for BSTs, which is shown in Figure 2c (i.e., the function iter_bst). Then, by applying the
techniques of Kjolstad et al. and Henry et al., our technique can emit code that uses the generated
iterator to iterate over a BST simultaneously with any other dynamicÐor even staticÐdata structure,
such as a block linked list (Figure 2c) or an array-based sparse vector (Figure 15).

4.2.3 Selecting Between Map Functions and Iterators. Unlike the recursive map functions described
in Section 4.2.1, iterators that our technique generates can be used to compute any sparse tensor
algebra operation. This includes all computations that are readily supported by recursive map
functions (i.e., multiplicative operations with only one sparse tensor operand). However, we find that
such computations can generally be performed more efficiently with recursive map functions that
our technique generates. For one thing, our technique can often emit parallelized map functions
to perform these computations, whereas iterators that our technique generates are inherently
sequential. For another, as we show in Section 5.4, iterators that our technique generates may incur
non-negligible performance overhead even when compared to sequential map functions. Thus, only
for computations that cannot be readily implemented using recursive map functions (i.e., those
that compute on multiple sparse operands) does our technique emit code that utilizes iterators.

4.3 Generating Assembly Code

In addition to generating code that compute on operands stored in dynamic tensor formats, our
technique can emit code to store the results of those computations in the same dynamic tensor
formats as well. This is achieved in several ways.
If a computation can be performed with a map function and if the result is stored in the same

format as the input tensor being mapped over, then our technique emits code that assembles the
result by essentially deeply copying the input data structure. This approach is valid since each
nonzero in the result is computed from one nonzero in the input tensor being mapped over, so our
technique can infer that the output data structure must have the same structure as the input data
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1 bst* map_b(bst* b, double* c) {

2 if (b) {

3 bst* ret = new bst;

4 ret->l = NULL;

5 if (b->l)

6 ret->l = map_b(b->l, c);

7 int32_t i = b->e.first;

8 ret->e.first = i;

9 ret->e.second = b->e.second * c[i];

10 ret->r = NULL;

11 if (b->r)

12 ret->r = map_b(b->r, c);

13 return ret;

14 }

15 return NULL;

16 }

Fig. 14. Example emitted code that multiplies a

sparse vector stored as a BST by a dense vector.

The code stores the result in another BST by

making a deep copy of the sparse input vector.

1 bool afirst = true;

2 uint8_t bs = iter_bst(0, bn, bstack, ib, bv);

3 int32_t pc = c_pos[0];

4 while (bs && pc < c_pos[1]) {

5 int32_t ic = c_crd[pc];

6 int32_t i = min(ib, ic);

7 if (i == ib && i == ic) {

8 double av = bv * c[pc];

9 if (afirst) {

10 aret = new blist_head;

11 append_first({i, av}, ast, aret);

12 afirst = false;

13 } else {

14 append_rest({i, av}, ast);

15 }

16 }

17 if (i == ib) bs = iter_bst(bs, ..., ib, bv);

18 pc += (i == ic);

19 }

Fig. 15. Example emitted code that multiplies a sparse vec-

tor stored as a BST by an array-based sparse vector. The

code invokes append_first and append_rest to store re-

sult nonzeros. Our technique can further specialize this

code for block linked list outputs by inlining implementa-

tions of the append functions for block linked lists.

structure. Figure 14 shows an example map function that our technique generates, which computes
on an input tensor stored as a BST and which stores the result as another BST. Such map functions
can be generated in largely the same way as described in Section 4.2.1. To make a deep copy of
the input data structure though, each emitted map function additionally allocates and returns a
new node that is of the same type as the input node (lines 3 and 13 in Figure 14). This new node is
initialized by copying over the coordinates of nonzeros that are stored in the input node (line 8 in
Figure 14), with the corresponding values initialized to be the results of the computation (line 9 in
Figure 14). Furthermore, new output child nodes are allocated by invoking the augmented map
function(s) on the input node’s children (lines 6 and 12 in Figure 14).

In general though, a tensor algebra kernel may have to assemble a dynamic data structure from
scratch to store the result. By using the abstraction we propose in Section 3.2, our technique can
generate such code without needing to hard-code for any specific data structure. Specifically, to
generate code that stores the result of a computation in a dynamic data structure, our technique
first emits code that invokes the assembly functions described in Section 3.2 to store the result
nonzeros. Then, the emitted code is specialized to a specific type of dynamic data structure by
inlining its implementation of the assembly functions. So to generate code that stores the result of a
tensor algebra computation in a block linked list, for instance, our technique emits code like what is
shown in Figure 15, which invokes the append_first and append_rest functions to store the result
nonzeros. The code generator can then inline implementations of append_first and append_rest

for block linked lists (as shown in Figure 8a) into the emitted code, yielding code that is specialized
for block linked list outputs. On the other hand, if a computation simply assigns an input tensor to
the output and if the input is stored in an array-based format, our technique can emit code that
invokes the build function (with a reference to the input as the argument elems) to bulk assemble
the output tensor. The code generator can then inline any dynamic tensor format’s implementation
of build in order to obtain code that bulk assembles the output in the aforementioned format.
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5 EVALUATION

We implement our technique as a prototype extension to the TACO sparse tensor algebra compiler,
and we find it generates sparse tensor algebra kernels that efficiently compute on operands stored
in dynamic tensor formats. Code that our technique generates have performance comparable to, if
not better than, equivalent code that can be implemented using hand-optimized frameworks and
libraries. At the same time, our technique can generate code for many tensor algebra computations
that are not readily supported by most of the aforementioned frameworks, including kernels that
simultaneously compute with static and dynamic sparse tensors for instance.

5.1 Experiment Setup

We evaluate code that our technique generates against four state-of-the-art frameworks and library:
Aspen [Dhulipala et al. 2019], Terrace [Pandey et al. 2021], STINGER [Ediger et al. 2012], and
PAM [Sun et al. 2018]. Aspen and Terrace are graph processing frameworks that let users compute
on dynamic graphs by invoking a fixed set of hand-optimized primitives for mapping over and
applying user-defined functions on edges and vertices. Internally, Aspen stores adjacency matrices
of graphs using C-trees, while Terrace instead uses a combination of fixed-size arrays, packed-
memory arrays, and B-trees. STINGER is another graph processing framework that supports
computations on dynamic graphs; STINGER stores graphs using block linked lists and provides
a set of macros that programmers can use to iterate over (and compute on) edges and vertices.
PAM, by contrast, is a lower-level, parallel C++ library that implements a fixed set of primitives for
operating on ordered key-value maps stored as self-balancing BSTs. While PAM does not directly
implement any tensor algebra kernel, the primitives that PAM exposes can be utilized to compute
on sparse tensors that are stored using BSTs.

Table 2. Statistics about real-world matrices used

in our experiments.

Matrix Dimensions NNZ

1 belgium_osm 1.44M × 1.44M 3.10M

2 cit-Patents 3.77M × 3.77M 16.5M

3 coAuthorsCiteseer 227K × 227K 1.63M

4 coPapersDBLP 540K × 540K 30.5M

5 com-Orkut 3.07M × 3.07M 234M

6 delaunay_n24 16.8M × 16.8M 101M

7 indochina-2004 7.41M × 7.41M 194M

8 rgg_n_2_24_s0 16.8M × 16.8M 265M

9 roadNet-CA 1.97M × 1.97M 5.53M

10 road_central 14.1M × 14.1M 33.9M

11 road_usa 23.9M × 23.9M 57.7M

12 ship_003 122K × 122K 3.78M

13 soc-LiveJournal1 4.85M × 4.85M 69.0M

14 webbase-1M 1.00M × 1.00M 3.11M

We run our experiments on a two-socket, 12-
core/24-thread 2.5 GHz Intel Xeon E5-2680 v3 ma-
chine with 30 MB of L3 cache per socket and 128 GB
of main memory. The machine runs Ubuntu 18.04.3
LTS. We compile all code using GCC 7.5.0 with
-O3 -march=native -mtune=native -ffast-math op-
timizations enabled. To ensure apples-to-apples com-
parisons of the actual algorithms that are imple-
mented by the (generated and hand-optimized) ker-
nels, we modify code generated by our technique
so that they operate on identical data structures in
memory as the libraries we compare against. This
only requires minor changes to how the fields of
input data structures are accessed and does not en-
tail any algorithmic change. Additionally, we use
the same parallel programming APIs as the libraries
we compare against (i.e., OpenMP for STINGER and
Cilk for the others), and all memory allocations are
done using jemalloc. We run each experiment 100
times under cold cache conditions and report median execution times. Each experiment is run
using 24 threads, with execution restricted to a single socket using numactl.
We run our experiments with real-world sparse matrices of varying sizes from the SuiteSparse

Matrix Collection [Davis and Hu 2011]. These matrices, which Table 2 describes in more detail,
represent graphs and other data that arise in disparate application domains.
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5.2 Support for Disparate Formats

Our technique generates efficient code to compute on dynamic sparse tensors that are stored in a
wide range of disparate formats. To demonstrate this, we evaluate the performance of code that
our technique generates for performing

• the PageRank kernel (∀𝑖∀𝑗 𝑦𝑖 += 𝐴𝑖 𝑗𝑥 𝑗𝑑 𝑗
−1) and

• sparse-dense matrix multiplication (∀𝑖∀𝑗∀𝑘 𝐶𝑖𝑘 ∥= 𝐴𝑖 𝑗𝐵 𝑗𝑘 , or SpMM)

where 𝐴 is a dynamic sparse binary matrix (representing a graph’s adjacency matrix), 𝐵 and 𝐶 are
dense binary matrices, 𝑥 and 𝑦 are dense floating-point vectors, and 𝑑 is a dense integer vector.
In particular, the first kernel corresponds to the main kernel in each iteration of the PageRank
algorithm [Page et al. 1998], while the second kernel can be used to implement algorithms such as
multi-source breadth-first search [Acer et al. 2016]. For each kernel, we measure the performance
of code that our technique generates for 𝐴 stored in various dynamic tensor formats (specified in
terms of level formats that are defined in Figures 5 and 6), including

• using only BSTs in the (bst, bst) format,
• using C-trees in the (bst, ctree) format,
• using block linked lists (BLLs) in the (dense, blist) format, and
• using a hybrid of fixed-size arrays and B-trees in the (dense, hybrid) format;

these correspond to formats that are supported by PAM,Aspen,3 STINGER, and Terrace4 respectively.
We then compare the generated code against the aforementioned frameworks and library. In
particular, Aspen and Terrace both implement an edgeMap primitive that can compute the PageRank
and SpMM kernels by mapping over edges in the input graph (i.e., nonzeros in 𝐴) and performing
some (user-defined) computation on each edge/nonzero. Similarly, STINGER provides macros that
can be used to efficiently iterate over incident edges of each vertex (i.e., nonzeros in each row of
𝐴) in order to perform the same computations. Additionally, PAM can compute the same kernels
in similar ways by mapping over the rows of 𝐴 (using the map_void primitive) and performing
either a map-reduce operation (for PageRank, using the semi_map_reduce primitive) or another map
operation (for SpMM) over the nonzeros in each row.

Tables 3 and 4 show the results of our experiments. Our technique is the only one that supports
all of the dynamic sparse tensor formats we consider; the other frameworks and library we evaluate
each only supports a single format. Nevertheless, as Tables 3 and 4 demonstrate, our technique is
able to achieve comparable, if not better, performance as all the hand-optimized frameworks and
library. In particular, code that our technique generates for computing on C-trees and block linked
lists have similar performance as Aspen and STINGER, with the generated code being 1.144ś1.177×
faster than Aspen and 1.002ś1.124× faster than STINGER on average. Additionally though, code
that our technique generates for computing on B-trees outperform Terrace by 1.214ś1.551× on
average, while code that our technique generates for computing on BSTs outperforms PAM by
1.202ś1.355× on average. It is not surprising that our technique achieves similar performance as
Aspen and STINGER, since code that our technique generates essentially implement the same
high-level algorithms as Aspen and STINGER. Meanwhile, Terrace is slower than our technique
since its implementation of edgeMap traverses B-trees using a sequential iterator that has more
complicated control flow, which increases the cost of accessing each nonzero. By contrast, for

3While Aspen also supports C-trees that use difference encoding to compress the coordinates stored in each block, we

only evaluate our technique and Aspen on C-trees that do not use difference encoding, since difference encoding is not

supported by our technique as we have described it.
4Terrace supports packed-memory arrays (PMAs) in addition to fixed-size arrays and B-trees, though we omit PMAs from

our evaluation since they are not supported by our technique.
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Table 3. Performance of code implemented using existing libraries and generated by our technique (TACO)

for computing the PageRank kernel on inputs stored in disparate dynamic sparse tensor formats. For each

format, we show execution times of code implemented using an existing library that supports the format,

execution times of code generated by our technique, and speedups achieved by the generated code. Each test

matrix is identified by its label as shown in Table 2.

Matrix

BSTs C-trees BLLs Array/B-tree Hybrid

PAM

(ms)

TACO

(ms)
PAM
TACO

Aspen

(ms)

TACO

(ms)
Aspen
TACO

STINGER

(ms)

TACO

(ms)
STINGER
TACO

Terrace

(ms)

TACO

(ms)
Terrace
TACO

1 9.876 5.508 1.793 6.970 6.310 1.105 15.05 14.18 1.061 3.080 2.783 1.107

2 61.51 43.53 1.413 49.23 36.96 1.332 63.77 56.96 1.120 40.46 32.28 1.253

3 3.142 2.506 1.254 1.712 2.018 0.848 3.314 2.951 1.123 1.766 1.100 1.605

4 31.80 27.70 1.148 14.99 12.30 1.219 34.87 28.89 1.207 26.96 14.36 1.877

5 504.0 449.7 1.121 378.7 276.4 1.370 494.3 403.3 1.226 471.5 288.0 1.637

6 143.8 111.6 1.288 85.48 76.36 1.119 218.4 199.0 1.098 46.12 42.40 1.088

7 188.7 181.6 1.040 90.45 70.85 1.277 195.6 171.5 1.141 529.9 164.6 3.220

8 378.9 265.8 1.426 163.0 147.1 1.108 435.5 355.5 1.225 306.7 148.1 2.071

9 12.54 7.817 1.604 8.852 8.089 1.094 24.19 20.35 1.189 3.920 3.582 1.094

10 172.9 98.67 1.752 117.5 96.22 1.221 192.5 184.7 1.042 71.48 62.27 1.148

11 166.1 95.12 1.746 118.1 106.5 1.109 269.1 258.7 1.040 58.86 52.32 1.125

12 7.044 6.734 1.046 3.613 3.046 1.186 6.076 5.751 1.056 6.868 3.638 1.888

13 156.2 124.1 1.259 103.2 80.12 1.288 176.7 149.7 1.180 157.3 79.48 1.979

14 6.715 4.811 1.396 5.220 4.005 1.303 9.224 8.707 1.059 4.879 2.738 1.782

Geomean 1.355 1.177 1.124 1.551

both PageRank and SpMM, our technique can generate code that instead recursively traverses the
B-trees, which reduces the overhead of accessing nonzeros.

5.3 Support for Disparate Computations

Not only does our technique support many disparate formats, our technique can generate efficient
code to compute a wide range of operations (in addition to those evaluated in Section 5.2) on
dynamic sparse tensors that are stored in those formats. To demonstrate this, we evaluate the
performance of code that our technique generates for performing

• sparse matrix-vector multiplication (∀𝑖∀𝑗 𝑦𝑖 += 𝐴𝑖 𝑗𝑥 𝑗 , or SpMV)

where 𝐴 is a dynamic sparse matrix stored in the (bst, bst) format, 𝑥 is a dense vector, and 𝑦 is a
dynamic sparse vector stored as a BST, as well as

• sparse matrix addition (∀𝑖∀𝑗 𝐷𝑖 𝑗 = 𝐴𝑖 𝑗 +𝐶𝑖 𝑗 , or SpAdd),
• sparse matrix element-wise multiplication (∀𝑖∀𝑗 𝐷𝑖 𝑗 = 𝐴𝑖 𝑗𝐶𝑖 𝑗 , or SpElwiseMul), and
• row-wise inner product (∀𝑖∀𝑗 𝑧𝑖 += 𝐴𝑖 𝑗𝐵𝑖 𝑗 , or RowInnerProd)

where 𝐴 and 𝐵 are dynamic sparse matrices stored in the (dense, bst) format, 𝐶 and 𝐷 are static
sparse matrices stored in CSR, and 𝑧 is a dense vector.
None of the kernels above are readily supported by Aspen, STINGER, or Terrace, regardless

of what format is used to store the dynamic sparse matrix operands. (More generally, the three
frameworks do not readily support computations that have dynamic sparse tensor outputs, that
simultaneously work with dynamic and static sparse tensors, or that perform non-element wise
operations on multiple dynamic sparse tensors.) By contrast, PAM, which is a lower-level library,
implements a number of primitives that can be utilized to compute all of the kernels above. In
particular, PAM can be used to compute sparse matrix-vector multiplication in a similar way as
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Table 4. Performance of code implemented using existing libraries and generated by our technique (TACO)

for computing SpMM on inputs stored in disparate dynamic sparse tensor formats. For each format, we show

execution times of code implemented using an existing library that supports the format, execution times of

code generated by our technique, and speedups achieved by our generated code. Each test matrix is identified

by its label as shown in Table 2.

Matrix

BSTs C-trees BLLs Array/B-tree Hybrid

PAM

(ms)

TACO

(ms)
PAM
TACO

Aspen

(ms)

TACO

(ms)
Aspen
TACO

STINGER

(ms)

TACO

(ms)
STINGER
TACO

Terrace

(ms)

TACO

(ms)
Terrace
TACO

1 23.40 16.95 1.380 20.19 17.06 1.184 27.19 29.33 0.927 16.23 14.60 1.112

2 163.4 153.3 1.066 138.3 126.2 1.095 147.9 150.2 0.985 146.8 124.6 1.178

3 11.21 9.839 1.140 8.825 8.374 1.054 11.85 11.47 1.033 9.378 8.408 1.115

4 122.5 99.96 1.225 87.24 78.24 1.115 108.4 102.0 1.062 109.8 90.58 1.213

5 1056 910.1 1.161 769.0 676.8 1.136 947.3 928.2 1.021 900.0 759.1 1.186

6 846.6 704.8 1.201 721.3 660.1 1.093 759.3 753.6 1.008 703.0 652.7 1.077

7 771.8 691.4 1.116 585.1 559.9 1.045 674.6 627.3 1.075 2295 963.1 2.383

8 1823 1634 1.115 1425 1346 1.058 1601 1558 1.028 1620 1388 1.167

9 43.82 33.83 1.295 37.20 32.73 1.136 48.09 51.74 0.930 33.53 30.65 1.094

10 344.4 282.0 1.222 302.4 269.9 1.121 337.8 368.4 0.917 252.1 227.9 1.106

11 457.1 338.3 1.351 391.8 329.5 1.189 477.9 516.1 0.926 333.5 300.4 1.110

12 30.13 25.35 1.189 21.68 20.40 1.063 28.93 26.61 1.087 28.24 22.62 1.248

13 413.6 366.0 1.130 320.3 288.9 1.109 374.0 370.8 1.009 401.2 307.1 1.307

14 17.55 13.70 1.281 20.21 11.46 1.764 17.92 17.29 1.037 18.70 17.07 1.096

Geomean 1.202 1.144 1.002 1.214

the PageRank kernel, except that the map operation (map) over 𝐴’s rows also constructs a new BST
to store the nonzeros of the output vector.5 Meanwhile, sparse matrix addition and element-wise
multiplication can be computed row by row by having PAM first convert each row of 𝐴 to a
BST, then compute the union/intersection of this BST with the corresponding row in 𝐶 (using
map_union/map_intersect), and finally map over the result (which is also stored in a BST) to store
result nonzeros in 𝐷 (using foreach_index). Additionally, row-wise inner product can be computed
by having PAM first compute the intersection of each row of 𝐴 with its corresponding row in 𝐵

and then perform a map-reduce over the result in order to compute the corresponding element in 𝑧.
We therefore limit our comparisons to PAM and do not consider the other frameworks.

Table 5 shows the results of our experiments. As these results demonstrate, our technique
generates code that significantly outperforms PAM for all of the kernels we evaluate. In particular,
code that our technique generates for adding a dynamic sparse matrix to a static sparse matrix
outperforms PAM by 6.975× on average. Meanwhile, code that our technique generates for element-
wise multiplying a dynamic sparse matrix by a static sparse matrix outperforms PAM by 7.224× on
average. PAM incurs significant overhead for these computations since the library only supports
computing unions and intersections of BSTs. As a result, performing these computations using
PAM requires allocating new nodes in order to convert the input matrix 𝐶 to BSTs and also to
actually perform the union/intersection operations. Moreover, PAM incurs additional overhead in
order to copy nonzeros that are computed by the union/intersection operations over to the output
matrix 𝐷 . By contrast, our technique emits code that directly performs the computation without
needing to convert to and from BST temporaries, thereby reducing memory traffic. This shows the

5While PAM uses a custom pool allocator to allocate new BST nodes by default, we modify PAM for our experiments so that

it simply uses malloc to allocate new nodes. We find that, for our benchmarks, this slightly improves PAM’s performance

and also yields more repeatable performance results.
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Table 5. Performance of code implemented using PAM and generated by our technique (TACO) for computing

disparate sparse tensor algebra operations on inputs stored using BSTs. For each operation, we show execution

times of code implemented using PAM, execution times of code generated by our technique, and speedups

achieved by our generated code. Each test matrix is identified by its label as shown in Table 2.

Matrix

SpMV SpAdd SpElwiseMul RowInnerProd

PAM

(ms)

TACO

(ms)
PAM
TACO

PAM

(ms)

TACO

(ms)
PAM
TACO

PAM

(ms)

TACO

(ms)
PAM
TACO

PAM

(ms)

TACO

(ms)
PAM
TACO

1 8.78 7.411 1.185 94.65 11.50 8.233 79.46 8.642 9.195 20.95 5.929 3.533

2 54.29 44.30 1.225 390.6 60.65 6.440 304.2 43.62 6.974 113.1 28.82 3.925

3 3.101 2.734 1.134 39.11 5.302 7.377 34.29 4.278 8.016 12.68 3.048 4.161

4 29.73 27.58 1.078 606.5 79.46 7.633 534.1 70.08 7.622 233.0 51.73 4.503

5 375.4 344.9 1.088 5097 653.1 7.805 3516 443.9 7.920 1547 385.1 4.017

6 156.1 132.0 1.182 2162 322.1 6.712 1761 261.6 6.733 614.1 169.1 3.633

7 193.9 188.4 1.029 4262 827.1 5.153 4018 790.5 5.083 1540 497.1 3.098

8 355.1 271.0 1.310 5057 769.2 6.574 3732 511.6 7.294 1592 428.8 3.713

9 11.86 10.48 1.132 148.9 22.55 6.601 123.2 18.24 6.754 35.02 10.13 3.457

10 169.9 115.4 1.473 964.8 144.0 6.698 804.6 111.2 7.234 220.1 61.95 3.553

11 180.8 132.5 1.365 1629 240.5 6.774 1364 192.9 7.073 371.4 105.3 3.528

12 7.040 6.944 1.014 174.4 19.19 9.092 169.1 18.38 9.201 71.26 13.38 5.327

13 132.0 110.9 1.190 1501 207.5 7.233 1137 154.9 7.345 463.4 115.5 4.012

14 6.256 5.511 1.135 100.6 16.28 6.180 81.95 14.06 5.829 25.07 8.645 2.900

Geomean 1.175 6.975 7.224 3.770

benefits of a compiler technique such as ours that can generate efficient code to directly compute
on both static and dynamic sparse tensors.

Table 6. Number of lines in the generated code (in-

cluding 21 lines of shared boilerplate), size of the

corresponding compiled object file, and compilation

time for each kernel evaluated in Sections 5.2 and 5.3.

Kernel LOC

Object File

Size

(bytes)

Compilation

Time

(ms)

PageRank (BSTs) 87 7496 290.5

PageRank (C-trees) 118 20376 509.8

PageRank (BLLs) 54 2544 236.6

PageRank (Hybrid) 109 23184 578.6

SpMM (BSTs) 88 8072 317.2

SpMM (C-trees) 123 7192 292.2

SpMM (BLLs) 61 3304 245.9

SpMM (Hybrid) 123 6824 331.0

SpMV 111 7184 284.8

SpAdd 186 5024 311.7

SpElwiseMul 153 4416 292.1

RowInnerProd 168 3368 273.0

Furthermore, code that our technique generates
to compute the row-wise inner product of two
dynamic sparse matrices outperforms PAM by
3.770× on average. PAM again incurs significant
overhead since it does not support directly per-
forming a map-reduce operation over the output
of an intersection operation. As a result, comput-
ing an inner product requires performing the in-
tersection and the map-reduce separately. By con-
trast, our technique can generate more efficient
code that effectively fuses the intersection and
the map-reduce. This demonstrates the benefits
of a system that does not rely on hand-optimized
code to perform a bounded set of operations.

5.4 Analysis of Generated Code

Table 6 reports the size of code that our technique
generates as well as the time required to compile
each generated kernel using GCC (with optimiza-
tions enabled).

In addition, we run several experiments to eval-
uate the effectiveness of optimizations that our
technique applies to generated code. We focus on the PageRank kernel with input matrices stored
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Table 7. Performance of PageRank kernels that map

over input matrices out of order (by performing pre-

order traversals) and in order. We show execution

times of both kernels and speedups achieved by the

in-order approach. Each test matrix is identified by

its label as shown in Table 2.

Matrix
Unordered

(ms)

Ordered

(ms)
Unordered
Ordered

1 6.233 5.508 1.132

2 44.48 43.53 1.022

3 2.735 2.506 1.092

4 29.03 27.70 1.048

5 441.5 449.7 0.982

6 119.8 111.6 1.073

7 186.2 181.6 1.026

8 332.2 265.8 1.250

9 8.605 7.817 1.101

10 104.3 98.67 1.057

11 106.0 95.12 1.114

12 6.774 6.734 1.006

13 127.6 124.1 1.028

14 4.698 4.811 0.977

Geomean 1.063

Table 8. Performance of PageRank kernels that rely

on generated iterators and generated recursive map

functions. We show execution times of both kernels

and speedups achieved by the recursive map function

approach. Each test matrix is identified by its label as

shown in Table 2.

Matrix
w/ Iterator

(ms)

w/ Map Func.

(ms)
w/ Iterator

w/ Map Func.

1 6.688 5.508 1.214

2 48.35 43.53 1.111

3 2.727 2.506 1.088

4 27.87 27.70 1.006

5 449.5 449.7 1.000

6 112.7 111.6 1.010

7 181.8 181.6 1.001

8 266.9 265.8 1.004

9 8.491 7.817 1.086

10 113.4 98.67 1.149

11 105.6 95.12 1.110

12 6.850 6.734 1.017

13 129.0 124.1 1.040

14 4.833 4.811 1.005

Geomean 1.058

using BSTs as a representative example. In particular, we compare code that our technique generates,
which maps over nonzeros in each row of the input matrix in coordinate order, against code that
instead pre-order traverses the BSTs to perform the computation. As Table 7 shows, generating code
to compute on stored nonzeros in coordinate order can yield speedups of 1.063× on average, since
this reduces cache misses when accessing the input vectors. Furthermore, we compare code that our
technique generates, which computes on input matrices using only recursive map functions, against
code that instead iterates over input matrices using iterators like those shown in Figure 2c. As
Table 8 shows, by generating recursive map functions to perform the computation where possible,
our technique can yield speedups of 1.058× on average. This emphasizes the need for a compiler to
be able to emit code that access dynamic sparse tensors in different ways for different computations.
Finally, we evaluate the overhead of having recursive function calls in generated code by mea-

suring the performance of code that our technique generates for computing the PageRank kernel,
compiled with and without GCC performing recursive function inlining. We find that recursive
function inlining has negligible impact on performance, with the generated code being only 0.56%
faster on average when recursive function inlining is enabled. This suggests that recursive function
calls are not the main bottlenecks in code our technique generates.

5.5 Benefits of Supporting Disparate Formats

To be able to effectively support many different types of applications, a general-purpose system for
computing with sparse tensors must be able to efficiently work with tensors that are stored in a
wide variety of formats. To demonstrate this, we compare the cost of computing on and modifying
sparse tensors that are stored using BSTs in the (bst, bst) format, using C-trees in the (bst, ctree)
format, and in the CSR format. To quantify the cost of computing on sparse tensors that are stored
in the aforementioned formats, we measure the performance of code that our technique generates
for computing the PageRank kernel. To quantify the cost of modifying sparse tensors that are
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Fig. 16. Time required to (a) compute the PageRank kernel on matrices stored in various formats and (b)

insert a new nonzero into matrices stored in the same formats. Labels along the horizontal axis identify the

input matrices as listed in Table 2.

stored in the same formats, we adapt the method used by Dhulipala et al. [2019] and randomly
sample 1% of nonzeros in each test matrix to treat as new nonzeros that need to be inserted. We
then measure the performance of optimized routines that are implemented in PAM, Aspen, and
Eigen (a widely-used sparse linear algebra library that supports CSR [Guennebaud et al. 2010]) for
inserting the sampled nonzeros individually into the tensor.
Figure 16 shows the results of our experiments. As these results illustrate, the performance of

compute on sparse tensors that are stored in a particular format is often anti-correlated with the
performance of modification on sparse tensors that are stored in the same format. In particular, as
Figure 16a shows, computing the PageRank kernel on CSR matrices is 1.788× faster on average
than computing the same kernel on matrices stored using C-trees, which in turn is 1.404× faster on
average than computing on matrices stored using BSTs. On the other hand, as Figure 16b shows,
inserting new nonzeros into matrices stored using BSTs is 6.893× faster on average than inserting
new nonzeros into matrices stored using C-trees, which in turn is orders of magnitudes faster than
inserting new nonzeros into CSR matrices. These results show how, depending on the relative
proportion of data modification and compute, different applications can benefit from using different
(dynamic or static) sparse tensor formats. This means a system intended to be general-purpose
should ideally support a wide range of disparate formats.

6 RELATED WORKS

As Section 2.1 shows, there exists a long line of works on using dynamic data structures to effi-
ciently represent adjacency matrices of dynamic graphs. In addition to the libraries and frameworks
identified in Section 2.1, LLAMA [Macko et al. 2015] uses a data structure that resembles variable
block linked lists to store elements of a dynamic graph’s adjacency matrix, except each block stores
elements corresponding to multiple rows. There are also various GPU libraries and frameworks
that store dynamic graphs using variants of either the data structures shown in Figure 3 [Awad et al.
2020; Winter et al. 2017] or other data structures that can be expressed using our proposed abstrac-
tions [Busato et al. 2018]. Furthermore, a number of works [King et al. 2016; Sengupta and Song
2017] have explored using array-based data structures, including packed memory arrays [Pandey
et al. 2021; Sha et al. 2017], to store dynamic graphs. However, all of these works, including those
identified in Section 2.1, rely on hand-optimized kernels to compute on graphs that are stored in
their data structure of choice. By contrast, our technique automatically generates such kernels.
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Existing sparse linear and tensor algebra compilers cannot readily, if at all, generate code to
efficiently compute on tensors stored in disparate dynamic sparse tensor formats. TACO [Chou et al.
2018, 2020; Kjolstad et al. 2019, 2017] generates efficient code for computing on static sparse tensors
that are stored in a wide range of array-based formats like CSR andDIA [Saad 2003]. However, TACO
cannot generate code to compute on dynamic sparse tensors that are stored in pointer-based data
structures, since the sparse tensor format abstraction of Chou et al. [2018] cannot represent those
data structures. In particular, the aforementioned abstraction requires users to provide snippets
of imperative code (i.e., level functions) that fully define iteration over data structures for storing
the coordinates of nonzeros. While such an approach suffices for supporting array-based data
structures, the same approach does not generalize well to pointer-based data structures. For one
thing, as the example in Figure 2c shows, efficient iterators for even relatively simple pointer-based
data structures like BSTs can be very complex and difficult to correctly implement. For another,
even if users can implement efficient iterators for pointer-based data structures, such iterators
alone cannot support computing all sparse tensor algebra operations as efficiently as possible, as
Figure 2b highlights for instance. Our technique addresses both issues by instead only requiring
users to provide high-level specifications that describe how different pointer-based data structures
organize nonzeros in memory. From these specifications, our technique can then automatically
generate code that efficiently access pointer-based data structures in different ways (e.g., using
sequential iterators or map functions) depending on the computation to be performed.
The Bernoulli compiler [Kotlyar 1999; Kotlyar et al. 1997; Stodghill 1997] similarly generates

sparse linear algebra kernels using an abstraction for sparse vector and matrix formats called the
black-box protocol. Kotlyar [1999] shows how array-based linked lists can be expressed using
the black-box protocol, though they do not consider tree-based data structures such as BSTs.
Furthermore, the black-box protocol requires users to manually implement low-level iterators
for supported data structures. Again, such iterators would not only be difficult to implement for
tree-based data structures but would also not be able to support computing all sparse tensor algebra
operations as efficiently as possible.
COMET [Tian et al. 2021] and MLIR [Bik et al. 2022] are two additional examples of sparse

tensor algebra compilers that support a wide range of static tensor formats by decomposing them
into per-dimension formats. Like TACO without our extension though, COMET and MLIR do not
support pointer-based data structures. MT1 [Bik 1996; Bik and Wijshoff 1993, 1994] and SIPR [Pugh
and Shpeisman 1999], meanwhile, each only support a fixed set of array-based formats for storing
sparse vectors and matrices and also do not support any pointer-based formats. More recently,
Venkat et al. [2015] have shown how polyhedral techniques can be utilized to generate sparse
linear algebra code by representing array-based sparse matrix formats as uninterpreted functions.
Additionally, Arnold et al. [2010] have shown how computations on array-based sparse matrix
formats can be expressed using a functional language they develop called LL. Again though, these
techniques cannot generate the types of algorithms that are needed to compute with dynamic
sparse tensors stored in recursive, pointer-based data structures.

There exists a separate line of works on synthesizing data structure operations from declarative
specifications. Many techniques have been proposed for synthesizing imperative programs that
modify pointer-based data structures like AVL trees and linked lists, given either user-specified
invariants [Kurilova and Rayside 2013; Qiu and Solar-Lezama 2017] or graphical specifications
of the desired programs’ inputs and outputs [Singh and Solar-Lezama 2011]. Other techniques
have also been proposed for synthesizing functional programs from declarative specifications,
including programs that process and manipulate pointer-based data structures [Kneuss et al. 2013;
Polikarpova et al. 2016]. None of these techniques consider block data structures like C-trees, and
they do not generate parallel code. In addition, Rayside et al. [2012] show how Java iterators can
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be synthesized for pointer-based data structures given specifications written in relational logic,
though their technique does not generate map functions or any other code to actually compute
on elements stored in those data structures. Finally, Hawkins et al. [2011] show how low-level
data representations can be synthesized given declarative specifications of the required relational
interface. However, their technique composes together data structures (e.g., linked lists) that are
hand-implemented in the C++ Standard Template Library and Boost, whereas our technique
automatically generates code to access and compute on those aforementioned data structures.

7 CONCLUSION

We have shown how a compiler can automatically generate efficient code to perform tensor algebra
computations on dynamic sparse tensors that are stored in recursive, pointer-based data structures.
In particular, by making the code generator agnostic to any particular format, our technique allows
users to extend the compiler to support new formats without modifying the code generator itself.
Our technique thereby makes it possible to build general-purpose systems that can effectively

work with dynamic sparse tensors in a wide variety of formats. Recall that, to effectively work
with dynamic sparse tensors in any particular format, a system must be able to both efficiently
modify and efficiently compute on tensors stored in that format. As mentioned in Section 1.1,
supporting efficient modifications of dynamic sparse tensors in any particular format essentially
only requires a routine for inserting new nonzeros and a routine for deleting existing nonzeros. So
to support efficiently modifying dynamic sparse tensors in a wide variety of formats, a developer
only needs to manually implement a bounded number of optimized routines that can be invoked by
a general-purpose system. Meanwhile, to efficiently perform arbitrary computations on dynamic
sparse tensors in a wide variety of formats, a general-purpose system can simply execute code that
our technique generates, which are always optimized for the desired computations and operand
formats. By enabling such a general-purpose system to be built, our technique can significantly
reduce the amount of programmer effort that is needed to effectively work with dynamic sparse
data in a broad range of application domains.
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