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Sparse tensors are a natural way of representing real-world data

Dense storage: 107 exabytes 
Sparse storage: 13 gigabytes
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int K = 0;
for (int i = 0; i < N; i++) {
  int ncols = A_pos[i+1] - A_pos[i];
  K = max(K, ncols);
}
int* B_crd = new int[K * N]();
double* B_vals = new double[K * N]();
for (int i = 0; i < N; i++) {
  int count = 0;
  for (int pA2 = A_pos[i]; 
           pA2 < A_pos[i+1]; pA2++) {
    int j = A_crd[pA2];
    int k = count++;
    int pB2 = k * N + i;
    B_crd[pB2] = j;
    B_vals[pB2] = A_vals[pA2];
}}

int count[N] = {0};
for (int pA1 = A_pos[0]; 
         pA1 < A_pos[1]; pA1++) {
  int i = A1_crd[pA1];
  count[i]++;
}
int* B_pos = new int[N + 1];
B_pos[0] = 0;
for (int i = 0; i < N; i++) {
  B_pos[i + 1] = B_pos[i] + count[i];
}
int* B_crd = new int[pos[N]];
double* B_vals = new double[pos[N]];
for (int pA1 = A_pos[0]; 
         pA1 < A_pos[1]; pA1++) {
  int i = A1_crd[pA1];
  int j = A2_crd[pA1];
  int pB2 = pos[i]++;
  B_crd[pB2] = j;
  B_vals[pB2] = A_vals[pA2];
}
for (int i = 0; i < N; i++) {
  B_pos[N - i] = B_pos[N - i - 1];
}
B_pos[0] = 0;

bool nz[2 * N - 1] = {0};
for (int i = 0; i < N; i++) {
  for (int pA2 = A_pos[i]; 
           pA2 < A_pos[i+1]; pA2++) {
    int j = A_crd[pA2];
    int k = j - i;
    nz[k + N - 1] = true;
}}
int* B_perm = new int[2 * N - 1];
int K = 0;
for (int i = -N + 1; i < N; i++) {
  if (nz[i + N - 1])
    B_perm[K++] = i;
}
double* B_vals = new double[K * N]();
int* B_rperm = new int[2 * N - 1];
for (int i = 0; i < K; i++) {
  B_rperm[B_perm[i] + N - 1] = i;
}
for (int i = 0; i < N; i++) {
  for (int pA2 = A_pos[i]; 
           pA2 < A_pos[i+1]; pA2++) {
    int j = A_crd[pA2];
    int k = j - i;
    int pB1 = B_rperm[k + N - 1];
    int pB2 = pB1 * N + i;
    B_vals[pB2] = A_vals[pA2];
}}
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Inefficient conversion eliminates benefit of using different formats

Construct tensor T in COO Compute with tensor T in COO

Construct tensor T in DIA Compute with 
tensor T in DIA

Only COO:

Only DIA:

Time

Construct tensor T in COO Compute with 
tensor T in DIACOO → CSR

Hybrid w/ 
libraries:

CSR → DIA
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Being able to generate efficient conversion routines 

lets users exploit different formats for performance

Construct tensor T in COO Compute with tensor T in COO

Construct tensor T in DIA Compute with 
tensor T in DIA

Only COO:

Only DIA:

Time

Construct tensor T in COO Compute with 
tensor T in DIA

Hybrid w/ 
our approach:

Construct tensor T in COO Compute with 
tensor T in DIACOO → CSR

Hybrid w/ 
libraries:

CSR → DIA

COO → DIA
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cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

A C

0 1 2 2 2

0 0

A C D

0 1 3 3 3

0 0 1

A C D E

0 1 3 4 4

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A B C D E

0 2 0 1 1

0 2 4 5 5
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Reordering a tensor’s nonzeros without explicitly sorting them 

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

A C

0 1 2 2 2

0 0

A C D

0 1 3 3 3

0 0 1

A C D E

0 1 3 4 4

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A B C D E

0 2 0 1 1

0 2 4 5 5

A B C D E H

0 2 4 5 6

0 2 0 1 1 2

A B C D E H

0 2 4 5 7

J

0 2 0 1 1 2 5

A B C D E H J

0 2 0 1 1 2 5

A B C D E H J

0 2 0 1 1 2 5

A B C D E F

0 2 4 6 8

H J

0 2 0 1 1 2 2 5

A B C D E F H J

0 2 0 1 1 2 2 5

A B C D E F H J

0 2 0 1 1 2 2 5

A B C D E F

0 2 4 7 9

G H J

0 2 0 1 1 2 4 2 5
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Reordering a tensor’s nonzeros without explicitly sorting them 

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals
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Reordering a tensor’s nonzeros without explicitly sorting them 

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 20 2 40 2 4 70 2 4 7 9
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Reordering a tensor’s nonzeros without explicitly sorting them 

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 20 2 40 2 4 70 2 4 7 9
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Reordering a tensor’s nonzeros without explicitly sorting them 

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

C

0

C D

0 1

H

2

H J

2 5

A

0

B

2

E

1

F

2

G

4

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 20 2 40 2 4 70 2 4 7 9
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Converting tensors to different formats requires knowing 

different statistics about the tensors

A B

FE
C D

H
G

J

SKY:
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A B

FE
C D

H
G

J
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A B

FE
C D

H
G

J

lb ub

BND:
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Converting tensors to different formats requires knowing 

different statistics about the tensors

A B

FE
C D

H
G

J

SKY:

A B

FE
C D

H
G

J

lb ub

BND:

A B

FE
C D

H
G

J

DIA:

−3 −2 −1 0 1 2
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Attribute queries express tensor statistics as aggregations 

over the coordinates of nonzeros

select [i] -> count(j) as nnz

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J
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Attribute queries express tensor statistics as aggregations 

over the coordinates of nonzeros
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Attribute queries express tensor statistics as aggregations 

over the coordinates of nonzeros

select [i] -> count(j) as nnz

i nnz
0 2
1 2
2 3
3 2

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J
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Attribute queries express tensor statistics as aggregations 

over the coordinates of nonzeros

select [i] -> count(j) as nnz

i nnz
0 2
1 2
2 3
3 2

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J
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Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations

select [i] -> count(j) as Q 8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J
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Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations

select [i] -> count(j) as Q

1 1
j = 0 1 2 3

i = 0

1

2 11
1 1

3 1

4 5

1
1

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J
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Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations

select [i] -> count(j) as Q

1 1
j = 0 1 2 3

i = 0

1

2 11
1 1

3 1

4 5

1
1

2 3 22
0 1 2 3

Q

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J
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select [i] -> count(j) as Q

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations



23

select [i] -> count(j) as Q

for (int j = 0; j < N; j++) { 
  for (int pB = pos[j];  
           pB < pos[j+1]; pB++) { 
    int i = crd[pB2]; 
    Q[i] += 1; 
  } 
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations
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select [i] -> count(j) as Q

for (int j = 0; j < N; j++) { 
  for (int pB = pos[j];  
           pB < pos[j+1]; pB++) { 
    int i = crd[pB2]; 
    Q[i] += 1; 
  } 
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations
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select [i] -> count(j) as Q

for (int j = 0; j < N; j++) { 
  for (int pB = pos[j];  
           pB < pos[j+1]; pB++) { 
    int i = crd[pB2]; 
    Q[i] += 1; 
  } 
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

for (int pB = 0;  
         pB < NNZ; pB++) { 
  int i = rows[pB]; 
  Q[i] += 1; 
}

B is COO

Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations
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select [i] -> count(j) as Q

for (int j = 0; j < N; j++) { 
  for (int pB = pos[j];  
           pB < pos[j+1]; pB++) { 
    int i = crd[pB2]; 
    Q[i] += 1; 
  } 
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

for (int pB = 0;  
         pB < NNZ; pB++) { 
  int i = rows[pB]; 
  Q[i] += 1; 
}

B0
i ⌘ (pos[i+1]� pos[i])

<latexit sha1_base64="HaH7Ltw/APGMaeJOrZa8AB6wifo=">AAACGnicbVDLSgNBEJyNrxhfUY9eBoMYEcOuBNSbxIvHCCYK2WWZnXTM4OzDmV4xLPkOL/6KFw+KeBMv/o2Tx8FECxqKqm66u4JECo22/W3lZmbn5hfyi4Wl5ZXVteL6RlPHqeLQ4LGM1XXANEgRQQMFSrhOFLAwkHAV3J4N/Kt7UFrE0SX2EvBCdhOJjuAMjeQXndquL6gLd6m4p2UX4QERsyTWLbHveH16QCc0r7/nF0t2xR6C/iXOmJTIGHW/+Om2Y56GECGXTOuWYyfoZUyh4BL6BTfVkDB+y26gZWjEQtBeNnytT3eM0qadWJmKkA7V3xMZC7XuhYHpDBl29bQ3EP/zWil2jr1MREmKEPHRok4qKcZ0kBNtCwUcZc8QxpUwt1LeZYpxNGkWTAjO9Mt/SfOw4lQrJxfV0mltHEeebJFtUiYOOSKn5JzUSYNw8kieySt5s56sF+vd+hi15qzxzCaZgPX1A4WOoJo=</latexit>

8i Qi = B0
i

<latexit sha1_base64="gy7nyxWiKB53mq4z7gsxf6K8IKk=">AAACAnicbVDLSsNAFL3xWesr6krcDBbRVUmkoCJCqRuXLdgHNCFMppN26OTBzEQoobjxV9y4UMStX+HOv3HaZqGtBy4czrmXe+/xE86ksqxvY2l5ZXVtvbBR3Nza3tk19/ZbMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO0Pbyd++4EKyeLoXo0S6oa4H7GAEay05JmHThALzLmXsTFyrlHDY+gG1U495pklq2xNgRaJnZMS5Kh75pfTi0ka0kgRjqXs2lai3AwLxQin46KTSppgMsR92tU0wiGVbjZ9YYxOtNJD+hZdkUJT9fdEhkMpR6GvO0OsBnLem4j/ed1UBZduxqIkVTQis0VBypGK0SQP1GOCEsVHmmAimL4VkQEWmCidWlGHYM+/vEha52W7Ur5qVErVWh5HAY7gGM7Ahguowh3UoQkEHuEZXuHNeDJejHfjY9a6ZOQzB/AHxucPCrqV6w==</latexit>

B is COOB is CSR

Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations
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select [i] -> count(j) as Q

for (int j = 0; j < N; j++) { 
  for (int pB = pos[j];  
           pB < pos[j+1]; pB++) { 
    int i = crd[pB2]; 
    Q[i] += 1; 
  } 
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

for (int pB = 0;  
         pB < NNZ; pB++) { 
  int i = rows[pB]; 
  Q[i] += 1; 
}

for (int i = 0; i < N; i++) { 
  Q[i] = pos[i+1] - pos[i]; 
}

B0
i ⌘ (pos[i+1]� pos[i])

<latexit sha1_base64="HaH7Ltw/APGMaeJOrZa8AB6wifo=">AAACGnicbVDLSgNBEJyNrxhfUY9eBoMYEcOuBNSbxIvHCCYK2WWZnXTM4OzDmV4xLPkOL/6KFw+KeBMv/o2Tx8FECxqKqm66u4JECo22/W3lZmbn5hfyi4Wl5ZXVteL6RlPHqeLQ4LGM1XXANEgRQQMFSrhOFLAwkHAV3J4N/Kt7UFrE0SX2EvBCdhOJjuAMjeQXndquL6gLd6m4p2UX4QERsyTWLbHveH16QCc0r7/nF0t2xR6C/iXOmJTIGHW/+Om2Y56GECGXTOuWYyfoZUyh4BL6BTfVkDB+y26gZWjEQtBeNnytT3eM0qadWJmKkA7V3xMZC7XuhYHpDBl29bQ3EP/zWil2jr1MREmKEPHRok4qKcZ0kBNtCwUcZc8QxpUwt1LeZYpxNGkWTAjO9Mt/SfOw4lQrJxfV0mltHEeebJFtUiYOOSKn5JzUSYNw8kieySt5s56sF+vd+hi15qzxzCaZgPX1A4WOoJo=</latexit>

8i Qi = B0
i
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B is COOB is CSR

Compiler generates code to compute attribute queries 

by reducing them to sparse tensor computations
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formats without hard-coding for any speci#c combination.

Our evaluation shows that the technique generates sparse
tensor conversion routines with performance between 1.00
and 2.01× that of hand-optimized versions in SPARSKIT and
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1 Introduction
Sparse multidimensional arrays (tensors) are suited for repre-
senting data in many domains, including data analytics [2, 6],
machine learning [41, 46], and others. Countless formats for
storing sparse tensors have been developed [5, 7, 8, 10, 13, 14,
23, 27, 34–37, 47, 49, 50, 53, 55, 60, 61] to accelerate kernels
like sparse matrix-vector multiplication (SpMV), and new
formats are constantly being proposed in recent literature.
No format is universally superior in every circumstance,

since the ideal format for storing a sparse tensor depends
on its structure and sparsity, the operation being performed,
and the available hardware. Applications typically need to
perform di"erent operations on the same tensor, and each
operation may require the tensor to be stored in a distinct
format for optimal performance. Importing data into a sparse
tensor, for instance, can be done e!ciently if the tensor is
constructed in the COO format [7] or the DOK format [54],
since they support e!cient appends or random insertions of
new nonzeros. Computing SpMV with the tensor, however,
can be done more than twice as fast if the tensor is stored in
CSR [55], which compresses out redundant row coordinates
and thereby reduces memory tra!c [17]. Alternatively, if
all of the tensor’s nonzeros are clustered along a few dense
diagonals, then storing it in DIA [49] minimizes memory
tra!c even more while exposing vectorization opportunities,
further improving SpMV performance by up to 22% as a
result [17]. Thus, to optimize the performance of both data
import and compute, an application must convert the tensor
from COO (or DOK) to DIA (or CSR). And in applications like
preconditioned solvers and sparse neural network training
where a tensor might only be computed with a few times,
the conversion must be e!cient so that the overhead does
not outweigh gains from using an optimized format [20].

General-purpose sparse linear and tensor algebra libraries
like SPARSKIT [48] and Intel MKL [24] thus strive to support
e!ciently converting tensors between as many formats as
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