
1

Sparse tensors are a natural way of representing real-world data

1

Sparse tensors are a natural way of representing real-world data

1

 10

Q
uality

Durable
Poor

…

2

1 1

1

1

1

2

3

1 1

Kindle

Dubliners

The I
liad

Monito
r

Swea
ter

Lap
top

Can
dide

Ja
ck

et …

Peter

Paul

Mary

Bob

Sam

Billy

Lilly

Hilde

…

Sparse tensors are a natural way of representing real-world data

1

 10

Q
uality

Durable
Poor

…

2

1 1

1

1

1

2

3

1 1

Kindle

Dubliners

The I
liad

Monito
r

Swea
ter

Lap
top

Can
dide

Ja
ck

et …

Peter

Paul

Mary

Bob

Sam

Billy

Lilly

Hilde

…

Sparse tensors are a natural way of representing real-world data

Dense storage: 107 exabytes
Sparse storage: 13 gigabytes

2

DOKMSR LNK

ELL

DIA

CSR

COO

DCSC

USS

DCSR

CSC

DNS

BDIA

BCSR

BCOO

SELLSKY BELL
LIL

VBRJAD

There exists many different formats for storing tensors

BND

CSB

2

DOKMSR LNK

ELL

DIA

CSR

COO

DCSC

USS

DCSR

CSC

DNS

BDIA

BCSR

BCOO

SELLSKY BELL
LIL

VBRJAD

There exists many different formats for storing tensors

BND

CSB

Efficient insertions

2

DOKMSR LNK

ELL

DIA

CSR

COO

DCSC

USS

DCSR

CSC

DNS

BDIA

BCSR

BCOO

SELLSKY BELL
LIL

VBRJAD

There exists many different formats for storing tensors

BND

CSB

Structured stencils

2

DOKMSR LNK

ELL

DIA

CSR

COO

DCSC

USS

DCSR

CSC

DNS

BDIA

BCSR

BCOO

SELLSKY BELL
LIL

VBRJAD

There exists many different formats for storing tensors

BND

CSB

Unstructured mesh simulations

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor T

Time

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor TConstruct tensor T in COO Compute with tensor T in COOOnly COO:

Time

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor TConstruct tensor T in COO Compute with tensor T in COOOnly COO:

Construct tensor T in DIA Compute with
tensor T in DIAOnly DIA:

Time

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor TConstruct tensor T in COO Compute with tensor T in COOOnly COO:

Construct tensor T in DIA Compute with
tensor T in DIAOnly DIA:

Time

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor TConstruct tensor T in COO Compute with tensor T in COOOnly COO:

Construct tensor T in DIA Compute with
tensor T in DIAOnly DIA:

Time

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor T

Hybrid:

Construct tensor T in COO Compute with tensor T in COOOnly COO:

Construct tensor T in DIA Compute with
tensor T in DIAOnly DIA:

Time

Construct tensor T in COO Compute with
tensor T in DIA

3

Applications must work with tensors in different formats for performance

Construct tensor T Compute with tensor T

COO → DIAHybrid:

Construct tensor T in COO Compute with tensor T in COOOnly COO:

Construct tensor T in DIA Compute with
tensor T in DIAOnly DIA:

Time

Construct tensor T in COO Compute with
tensor T in DIA

4

Manually implementing support for efficient conversion

between all combinations of formats is infeasible

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

CSR

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

4

Manually implementing support for efficient conversion

between all combinations of formats is infeasible

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

CSR

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

4

Manually implementing support for efficient conversion

between all combinations of formats is infeasible

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

CSR

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

int K = 0;
for (int i = 0; i < N; i++) {
 int ncols = A_pos[i+1] - A_pos[i];
 K = max(K, ncols);
}
int* B_crd = new int[K * N]();
double* B_vals = new double[K * N]();
for (int i = 0; i < N; i++) {
 int count = 0;
 for (int pA2 = A_pos[i];
 pA2 < A_pos[i+1]; pA2++) {
 int j = A_crd[pA2];
 int k = count++;
 int pB2 = k * N + i;
 B_crd[pB2] = j;
 B_vals[pB2] = A_vals[pA2];
}}

int count[N] = {0};
for (int pA1 = A_pos[0];
 pA1 < A_pos[1]; pA1++) {
 int i = A1_crd[pA1];
 count[i]++;
}
int* B_pos = new int[N + 1];
B_pos[0] = 0;
for (int i = 0; i < N; i++) {
 B_pos[i + 1] = B_pos[i] + count[i];
}
int* B_crd = new int[pos[N]];
double* B_vals = new double[pos[N]];
for (int pA1 = A_pos[0];
 pA1 < A_pos[1]; pA1++) {
 int i = A1_crd[pA1];
 int j = A2_crd[pA1];
 int pB2 = pos[i]++;
 B_crd[pB2] = j;
 B_vals[pB2] = A_vals[pA2];
}
for (int i = 0; i < N; i++) {
 B_pos[N - i] = B_pos[N - i - 1];
}
B_pos[0] = 0;

bool nz[2 * N - 1] = {0};
for (int i = 0; i < N; i++) {
 for (int pA2 = A_pos[i];
 pA2 < A_pos[i+1]; pA2++) {
 int j = A_crd[pA2];
 int k = j - i;
 nz[k + N - 1] = true;
}}
int* B_perm = new int[2 * N - 1];
int K = 0;
for (int i = -N + 1; i < N; i++) {
 if (nz[i + N - 1])
 B_perm[K++] = i;
}
double* B_vals = new double[K * N]();
int* B_rperm = new int[2 * N - 1];
for (int i = 0; i < K; i++) {
 B_rperm[B_perm[i] + N - 1] = i;
}
for (int i = 0; i < N; i++) {
 for (int pA2 = A_pos[i];
 pA2 < A_pos[i+1]; pA2++) {
 int j = A_crd[pA2];
 int k = j - i;
 int pB1 = B_rperm[k + N - 1];
 int pB2 = pB1 * N + i;
 B_vals[pB2] = A_vals[pA2];
}}

5

Hand-optimized libraries limit support for efficient conversion

to few combinations of formats

CSR
ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY..
.

..
.

5

Hand-optimized libraries limit support for efficient conversion

to few combinations of formats

CSR
ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY..
.

..
.

5

Hand-optimized libraries limit support for efficient conversion

to few combinations of formats

CSR
ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY..
.

..
.

5

Hand-optimized libraries limit support for efficient conversion

to few combinations of formats

CSR
ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

ELL

DIA

BCSR
COO

JAD

BND

SKY..
.

..
.

6

Inefficient conversion eliminates benefit of using different formats

Construct tensor T in COO Compute with tensor T in COO

Construct tensor T in DIA Compute with
tensor T in DIA

Only COO:

Only DIA:

Time

Construct tensor T in COO Compute with
tensor T in DIACOO → CSR

Hybrid w/
libraries:

CSR → DIA

Automatic Generation of Efficient Sparse Tensor
Format Conversion Routines

Stephen Chou, Fredrik Kjolstad, and Saman AmarasingheStephen Chou, Fredrik Kjolstad, and Saman Amarasinghe

8

A compiler can generate efficient conversion routines from standalone
specifications for each tensor format

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

..
.

CSR

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

8

A compiler can generate efficient conversion routines from standalone
specifications for each tensor format

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

..
.

CSR

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

8

A compiler can generate efficient conversion routines from standalone
specifications for each tensor format

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

..
.

CSR

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

8

A compiler can generate efficient conversion routines from standalone
specifications for each tensor format

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

..
.

CSR

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

8

A compiler can generate efficient conversion routines from standalone
specifications for each tensor format

ELL

DIA

BCSR
COO

JAD

BND

SKY

..
.

..
.

..
.

CSR

ELL

DIA

BCSR
COO

JAD

BND

SKY
CSR

9

Our technique generates efficient code
N

or
m

al
iz

ed
 ti

m
e

0

1

2

3

4

5

COO → CSR CSR → CSC CSR → DIA CSC → DIA COO → DIA

This work SPARSKIT Intel MKL

9

Our technique generates efficient code
N

or
m

al
iz

ed
 ti

m
e

0

1

2

3

4

5

COO → CSR CSR → CSC CSR → DIA CSC → DIA COO → DIA

This work SPARSKIT Intel MKL

10

Being able to generate efficient conversion routines

lets users exploit different formats for performance

Construct tensor T in COO Compute with tensor T in COO

Construct tensor T in DIA Compute with
tensor T in DIA

Only COO:

Only DIA:

Time

Construct tensor T in COO Compute with
tensor T in DIA

Hybrid w/
our approach:

Construct tensor T in COO Compute with
tensor T in DIACOO → CSR

Hybrid w/
libraries:

CSR → DIA

COO → DIA

11

Coordinate Remappings

Attribute Queries

11

Coordinate Remappings

Attribute Queries

12

Different tensor formats arrange nonzeros in memory in different ways

A B

FE
C D

H
G

J

12

Different tensor formats arrange nonzeros in memory in different ways

0 2 4 7 9pos

crd 0 2 1 2 1 2 4 2 5

vals A B C D E F G H J

CSR
A B

FE
C D

H
G

J

12

Different tensor formats arrange nonzeros in memory in different ways

4N

M 6

3K

-1 0 2perm

vals C E H A D F B G J

DIA

0 2 4 7 9pos

crd 0 2 1 2 1 2 4 2 5

vals A B C D E F G H J

CSR
A B

FE
C D

H
G

J

12

Different tensor formats arrange nonzeros in memory in different ways

4N

M 6

3K

-1 0 2perm

vals C E H A D F B G J

DIA

0 2 4 7 9pos

crd 0 2 1 2 1 2 4 2 5

vals A B C D E F G H J

CSR

0 1 3pos

crd 0 0 1

vals

2BI

BJ 3

A B C D E F H G J

BCSR

A B

FE
C D

H
G

J

13

Coordinate remapping captures how nonzeros are arranged in memory

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

A B

E
C D

H J

13

Coordinate remapping captures how nonzeros are arranged in memory

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J A B C D E F

0 0 1 1 2 2i

j

2 3 3

G H J

0 2 0 1 1 2 4 2 5

13

Coordinate remapping captures how nonzeros are arranged in memory

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J A B C D E F

0 0 1 1 2 2i

j

2 3 3

G H J

0 2 0 1 1 2 4 2 5

j-i 0 2 -1 0 -1 0 2 -1 2

13

Coordinate remapping captures how nonzeros are arranged in memory

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

i

j

j-i

C E H A D F

1 2 3 0 1 2 0 2 3

B G J

0 1 2 0 1 2 2 4 5

-1 -1 -1 0 0 0 2 2 2

13

Coordinate remapping captures how nonzeros are arranged in memory

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

i

j

j-i

C E H A D F

1 2 3 0 1 2 0 2 3

B G J

0 1 2 0 1 2 2 4 5

-1 -1 -1 0 0 0 2 2 2

C E H A D F

1 2 3 0 1 2 0 2 3

B G J

0 1 2 0 1 2 2 4 5

-1 -1 -1 0 0 0 2 2 2
A B

j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

14

Coordinate remapping captures how nonzeros are arranged in memory

C E H A D F

1 2 3 0 1 2i

j

0 2 3

B G J

0 1 2 0 1 2 2 4 5

-1 -1 -1 0 0 0j-i 2 2 2

14

Coordinate remapping captures how nonzeros are arranged in memory

C E H A D

4N

M

F B

6

3K

-1 0 2perm

G Jvals

C E H A D F

1 2 3 0 1 2i

j

0 2 3

B G J

0 1 2 0 1 2 2 4 5

-1 -1 -1 0 0 0j-i 2 2 2

14

Coordinate remapping captures how nonzeros are arranged in memory

(i,j) -> (j-i,i,j)

C E H A D

4N

M

F B

6

3K

-1 0 2perm

G Jvals

14

Coordinate remapping captures how nonzeros are arranged in memory

(i,j) -> (j-i,i,j)

C E H A D

4N

M

F B

6

3K

-1 0 2perm

G Jvals

14

Coordinate remapping captures how nonzeros are arranged in memory

(i,j) -> (j-i,i,j)

C E H A D

4N

M

F B

6

3K

-1 0 2perm

G Jvals

15

Compiler uses coordinate remapping to generate code to reorder nonzeros

(i,j) -> (j-i,i,j)

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

(i,j) -> (j-i,i,j)

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

(i,j) -> (j-i,i,j)

4N

M 6

3K

-1 0 2perm

vals

A B

FE
C D

H
G

J

j = 0 1 2 3

i = 0

1

2

3

4 5

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

(i,j) -> (j-i,i,j)

4N

M 6

3K

-1 0 2perm

vals

A B

FE
C D

H
G

J

j = 0 1 2 3

i = 0

1

2

3

4 5

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

(i,j) -> (j-i,i,j)

4N

M 6

3K

-1 0 2perm

vals

A B

FE
C D

H
G

J

j = 0 1 2 3

i = 0

1

2

3

4 5

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

(i,j) -> (j-i,i,j)

4N

M 6

3K

-1 0 2perm

vals

A B

FE
C D

H
G

J

j = 0 1 2 3

i = 0

1

2

3

4 5

A

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

4N

M 6

3K

-1 0 2perm

vals

A B

FE
C D

H
G

J

j = 0 1 2 3

i = 0

1

2

3

4 5

A

15

Compiler uses coordinate remapping to generate code to reorder nonzeros
for (int bi = 0;
 bi < M / BI; bi++) {
 for (int bj = 0;
 bj < N / BJ; bj++) {
 for (int i = bi * BI;
 i < (bi + 1) * BI; i++) {
 for (int j = bj * BJ;
 j < (bj + 1) * BJ; j++) {
 if (B[i,j] != 0.0) {
 Identify segment d in vals
 that corresponds to j - i
 Identify position p in d
 that corresponds to i and j
 vals[p] = B[i,j]
 }
 }
 }
 }
}

4N

M 6

3K

-1 0 2perm

vals

A B

FE
C D

H
G

J

j = 0 1 2 3

i = 0

1

2

3

4 5

AA BC A BC A D BC E A D BC E A D F BC E H A D F BC E H A D F B JC E H A D F B G J

16

Coordinate Remappings

Attribute Queries

17

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

COO

17

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J A B C D E F

0 2 4 7 9pos

crd

G H J

0 2 1 2 1 2 4 2 5

vals

CSR

17

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J A B C D E F

0 2 4 7 9pos

crd

G H J

0 2 1 2 1 2 4 2 5

vals

CSR

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals A

0

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

A C

0 1 2 2 2

0 0

A C D

0 1 3 3 3

0 0 1

A C D E

0 1 3 4 4

0 0 1 1

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

A C

0 1 2 2 2

0 0

A C D

0 1 3 3 3

0 0 1

A C D E

0 1 3 4 4

0 0 1 1

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

A C

0 1 2 2 2

0 0

A C D

0 1 3 3 3

0 0 1

A C D E

0 1 3 4 4

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A B C D E

0 2 0 1 1

0 2 4 5 5

18

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 0 0 0 0pos

crd

vals

0 1 0 0 00 1 1 0 00 1 1 1 00 1 1 1 1

A

0

A C

0 1 2 2 2

0 0

A C D

0 1 3 3 3

0 0 1

A C D E

0 1 3 4 4

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A C D E

0 0 1 1

A B C D E

0 2 0 1 1

0 2 4 5 5

A B C D E H

0 2 4 5 6

0 2 0 1 1 2

A B C D E H

0 2 4 5 7

J

0 2 0 1 1 2 5

A B C D E H J

0 2 0 1 1 2 5

A B C D E H J

0 2 0 1 1 2 5

A B C D E F

0 2 4 6 8

H J

0 2 0 1 1 2 2 5

A B C D E F H J

0 2 0 1 1 2 2 5

A B C D E F H J

0 2 0 1 1 2 2 5

A B C D E F

0 2 4 7 9

G H J

0 2 0 1 1 2 4 2 5

19

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

19

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 20 2 40 2 4 70 2 4 7 9

19

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 20 2 40 2 4 70 2 4 7 9

19

Reordering a tensor’s nonzeros without explicitly sorting them

requires knowing statistics about the tensor

0pos

crd

vals

i nnz
0 2
1 2
2 3
3 2

C

0

C D

0 1

H

2

H J

2 5

A

0

B

2

E

1

F

2

G

4

A C D E B H

0 1 1 2 0 3rows

cols

3 2 2

J F G

0 0 1 1 2 2 5 2 4

vals

0 20 2 40 2 4 70 2 4 7 9

20

Converting tensors to different formats requires knowing

different statistics about the tensors

A B

FE
C D

H
G

J

SKY:

20

Converting tensors to different formats requires knowing

different statistics about the tensors

A B

FE
C D

H
G

J

SKY:

A B

FE
C D

H
G

J

lb ub

BND:

20

Converting tensors to different formats requires knowing

different statistics about the tensors

A B

FE
C D

H
G

J

SKY:

A B

FE
C D

H
G

J

lb ub

BND:

A B

FE
C D

H
G

J

DIA:

−3 −2 −1 0 1 2

21

Attribute queries express tensor statistics as aggregations

over the coordinates of nonzeros

select [i] -> count(j) as nnz

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

21

Attribute queries express tensor statistics as aggregations

over the coordinates of nonzeros

select [i] -> count(j) as nnz

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

21

Attribute queries express tensor statistics as aggregations

over the coordinates of nonzeros

select [i] -> count(j) as nnz

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

21

Attribute queries express tensor statistics as aggregations

over the coordinates of nonzeros

select [i] -> count(j) as nnz

i nnz
0 2
1 2
2 3
3 2

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

21

Attribute queries express tensor statistics as aggregations

over the coordinates of nonzeros

select [i] -> count(j) as nnz

i nnz
0 2
1 2
2 3
3 2

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

22

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

select [i] -> count(j) as Q 8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

22

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

select [i] -> count(j) as Q

1 1
j = 0 1 2 3

i = 0

1

2 11
1 1

3 1

4 5

1
1

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

22

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

select [i] -> count(j) as Q

1 1
j = 0 1 2 3

i = 0

1

2 11
1 1

3 1

4 5

1
1

2 3 22
0 1 2 3

Q

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

A B
j = 0 1 2 3

i = 0

1

2 FE
C D

3 H

4 5

G
J

23

select [i] -> count(j) as Q

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

23

select [i] -> count(j) as Q

for (int j = 0; j < N; j++) {
 for (int pB = pos[j];
 pB < pos[j+1]; pB++) {
 int i = crd[pB2];
 Q[i] += 1;
 }
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

23

select [i] -> count(j) as Q

for (int j = 0; j < N; j++) {
 for (int pB = pos[j];
 pB < pos[j+1]; pB++) {
 int i = crd[pB2];
 Q[i] += 1;
 }
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

23

select [i] -> count(j) as Q

for (int j = 0; j < N; j++) {
 for (int pB = pos[j];
 pB < pos[j+1]; pB++) {
 int i = crd[pB2];
 Q[i] += 1;
 }
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

for (int pB = 0;
 pB < NNZ; pB++) {
 int i = rows[pB];
 Q[i] += 1;
}

B is COO

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

23

select [i] -> count(j) as Q

for (int j = 0; j < N; j++) {
 for (int pB = pos[j];
 pB < pos[j+1]; pB++) {
 int i = crd[pB2];
 Q[i] += 1;
 }
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

for (int pB = 0;
 pB < NNZ; pB++) {
 int i = rows[pB];
 Q[i] += 1;
}

B0
i ⌘ (pos[i+1]� pos[i])

<latexit sha1_base64="HaH7Ltw/APGMaeJOrZa8AB6wifo=">AAACGnicbVDLSgNBEJyNrxhfUY9eBoMYEcOuBNSbxIvHCCYK2WWZnXTM4OzDmV4xLPkOL/6KFw+KeBMv/o2Tx8FECxqKqm66u4JECo22/W3lZmbn5hfyi4Wl5ZXVteL6RlPHqeLQ4LGM1XXANEgRQQMFSrhOFLAwkHAV3J4N/Kt7UFrE0SX2EvBCdhOJjuAMjeQXndquL6gLd6m4p2UX4QERsyTWLbHveH16QCc0r7/nF0t2xR6C/iXOmJTIGHW/+Om2Y56GECGXTOuWYyfoZUyh4BL6BTfVkDB+y26gZWjEQtBeNnytT3eM0qadWJmKkA7V3xMZC7XuhYHpDBl29bQ3EP/zWil2jr1MREmKEPHRok4qKcZ0kBNtCwUcZc8QxpUwt1LeZYpxNGkWTAjO9Mt/SfOw4lQrJxfV0mltHEeebJFtUiYOOSKn5JzUSYNw8kieySt5s56sF+vd+hi15qzxzCaZgPX1A4WOoJo=</latexit>

8i Qi = B0
i

<latexit sha1_base64="gy7nyxWiKB53mq4z7gsxf6K8IKk=">AAACAnicbVDLSsNAFL3xWesr6krcDBbRVUmkoCJCqRuXLdgHNCFMppN26OTBzEQoobjxV9y4UMStX+HOv3HaZqGtBy4czrmXe+/xE86ksqxvY2l5ZXVtvbBR3Nza3tk19/ZbMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO0Pbyd++4EKyeLoXo0S6oa4H7GAEay05JmHThALzLmXsTFyrlHDY+gG1U495pklq2xNgRaJnZMS5Kh75pfTi0ka0kgRjqXs2lai3AwLxQin46KTSppgMsR92tU0wiGVbjZ9YYxOtNJD+hZdkUJT9fdEhkMpR6GvO0OsBnLem4j/ed1UBZduxqIkVTQis0VBypGK0SQP1GOCEsVHmmAimL4VkQEWmCidWlGHYM+/vEha52W7Ur5qVErVWh5HAY7gGM7Ahguowh3UoQkEHuEZXuHNeDJejHfjY9a6ZOQzB/AHxucPCrqV6w==</latexit>

B is COOB is CSR

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

23

select [i] -> count(j) as Q

for (int j = 0; j < N; j++) {
 for (int pB = pos[j];
 pB < pos[j+1]; pB++) {
 int i = crd[pB2];
 Q[i] += 1;
 }
}

B is CSC

8i8j Qi += map(Bij , 1)

<latexit sha1_base64="ydAryB2Ef+Csvamj2nB4eliHJ8w=">AAACKnicbZBNSwMxEIaz9avWr6pHL8EiKErZlYKKCLVePCrYWuiWJZtONZr9IJkVy7K/x4t/xUsPSvHqDzGtRdT6QuDhnRky8/qxFBpte2DlpqZnZufy84WFxaXlleLqWkNHieJQ55GMVNNnGqQIoY4CJTRjBSzwJVz792fD+vUDKC2i8Ap7MbQDdhOKruAMjeUVT91upJiUXioy+s13ho/ppSeoGzC8VSDT3eyEugiPmAYszrZrZuAu26POjlcs2WV7JDoJzhhKZKwLr9h3OxFPAgiRS6Z1y7FjbKdMoeASsoKbaIgZv2c30DIYsgB0Ox2dmtEt43So2dO8EOnI/TmRskDrXuCbzuHm+m9taP5XayXYPWynIowThJB/fdRNJMWIDnOjHaGAo+wZYFwJsyvlt0wxjibdggnB+XvyJDT2y06lfHRZKVVr4zjyZINskm3ikANSJefkgtQJJ0/khbySN+vZ6lsD6/2rNWeNZ9bJL1kfnxRSpwQ=</latexit>

for (int pB = 0;
 pB < NNZ; pB++) {
 int i = rows[pB];
 Q[i] += 1;
}

for (int i = 0; i < N; i++) {
 Q[i] = pos[i+1] - pos[i];
}

B0
i ⌘ (pos[i+1]� pos[i])

<latexit sha1_base64="HaH7Ltw/APGMaeJOrZa8AB6wifo=">AAACGnicbVDLSgNBEJyNrxhfUY9eBoMYEcOuBNSbxIvHCCYK2WWZnXTM4OzDmV4xLPkOL/6KFw+KeBMv/o2Tx8FECxqKqm66u4JECo22/W3lZmbn5hfyi4Wl5ZXVteL6RlPHqeLQ4LGM1XXANEgRQQMFSrhOFLAwkHAV3J4N/Kt7UFrE0SX2EvBCdhOJjuAMjeQXndquL6gLd6m4p2UX4QERsyTWLbHveH16QCc0r7/nF0t2xR6C/iXOmJTIGHW/+Om2Y56GECGXTOuWYyfoZUyh4BL6BTfVkDB+y26gZWjEQtBeNnytT3eM0qadWJmKkA7V3xMZC7XuhYHpDBl29bQ3EP/zWil2jr1MREmKEPHRok4qKcZ0kBNtCwUcZc8QxpUwt1LeZYpxNGkWTAjO9Mt/SfOw4lQrJxfV0mltHEeebJFtUiYOOSKn5JzUSYNw8kieySt5s56sF+vd+hi15qzxzCaZgPX1A4WOoJo=</latexit>

8i Qi = B0
i

<latexit sha1_base64="gy7nyxWiKB53mq4z7gsxf6K8IKk=">AAACAnicbVDLSsNAFL3xWesr6krcDBbRVUmkoCJCqRuXLdgHNCFMppN26OTBzEQoobjxV9y4UMStX+HOv3HaZqGtBy4czrmXe+/xE86ksqxvY2l5ZXVtvbBR3Nza3tk19/ZbMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO0Pbyd++4EKyeLoXo0S6oa4H7GAEay05JmHThALzLmXsTFyrlHDY+gG1U495pklq2xNgRaJnZMS5Kh75pfTi0ka0kgRjqXs2lai3AwLxQin46KTSppgMsR92tU0wiGVbjZ9YYxOtNJD+hZdkUJT9fdEhkMpR6GvO0OsBnLem4j/ed1UBZduxqIkVTQis0VBypGK0SQP1GOCEsVHmmAimL4VkQEWmCidWlGHYM+/vEha52W7Ur5qVErVWh5HAY7gGM7Ahguowh3UoQkEHuEZXuHNeDJejHfjY9a6ZOQzB/AHxucPCrqV6w==</latexit>

B is COOB is CSR

Compiler generates code to compute attribute queries

by reducing them to sparse tensor computations

24

In conclusion…

Efficient sparse tensor conversion routines can be automatically generated from
per-format specifications

This work was
supported by:

tensor-compiler.org

Automatic Generation of E!cient
Sparse Tensor Format Conversion Routines

Stephen Chou
MIT CSAIL

Cambridge, MA, USA
s3chou@csail.mit.edu

Fredrik Kjolstad
Stanford University
Stanford, CA, USA

kjolstad@cs.stanford.edu

Saman Amarasinghe
MIT CSAIL

Cambridge, MA, USA
saman@csail.mit.edu

Abstract
This paper shows how to generate code that e!ciently con-
verts sparse tensors between disparate storage formats (data
layouts) such as CSR, DIA, ELL, and many others. We decom-
pose sparse tensor conversion into three logical phases: coor-
dinate remapping, analysis, and assembly. We then develop
a language that precisely describes how di"erent formats
group together and order a tensor’s nonzeros in memory.
This lets a compiler emit code that performs complex remap-
pings of nonzeros when converting between formats.We also
develop a query language that can extract statistics about
sparse tensors, and we show how to emit e!cient analysis
code that computes such queries. Finally, we de#ne an ab-
stract interface that captures how data structures for storing
a tensor can be e!ciently assembled given speci#c statistics
about the tensor. Disparate formats can implement this com-
mon interface, thus letting a compiler emit optimized sparse
tensor conversion code for arbitrary combinations of many
formats without hard-coding for any speci#c combination.

Our evaluation shows that the technique generates sparse
tensor conversion routines with performance between 1.00
and 2.01× that of hand-optimized versions in SPARSKIT and
IntelMKL, two popular sparse linear algebra libraries. And by
emitting code that avoids materializing temporaries, which
both libraries need for many combinations of source and
target formats, our technique outperforms those libraries by
1.78 to 4.01× for CSC/COO to DIA/ELL conversion.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Source code gen-
eration;Domain speci!c languages; •Mathematics of com-
puting → Mathematical software performance.

Keywords: sparse tensor conversion, sparse tensor assem-
bly, sparse tensor algebra, sparse tensor formats, coordinate
remapping notation, attribute query language

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7613-6/20/06.
h!ps://doi.org/10.1145/3385412.3385963

ACM Reference Format:
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020.
Automatic Generation of E!cient Sparse Tensor Format Conversion
Routines. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,
16 pages. h!ps://doi.org/10.1145/3385412.3385963

1 Introduction
Sparse multidimensional arrays (tensors) are suited for repre-
senting data in many domains, including data analytics [2, 6],
machine learning [41, 46], and others. Countless formats for
storing sparse tensors have been developed [5, 7, 8, 10, 13, 14,
23, 27, 34–37, 47, 49, 50, 53, 55, 60, 61] to accelerate kernels
like sparse matrix-vector multiplication (SpMV), and new
formats are constantly being proposed in recent literature.
No format is universally superior in every circumstance,

since the ideal format for storing a sparse tensor depends
on its structure and sparsity, the operation being performed,
and the available hardware. Applications typically need to
perform di"erent operations on the same tensor, and each
operation may require the tensor to be stored in a distinct
format for optimal performance. Importing data into a sparse
tensor, for instance, can be done e!ciently if the tensor is
constructed in the COO format [7] or the DOK format [54],
since they support e!cient appends or random insertions of
new nonzeros. Computing SpMV with the tensor, however,
can be done more than twice as fast if the tensor is stored in
CSR [55], which compresses out redundant row coordinates
and thereby reduces memory tra!c [17]. Alternatively, if
all of the tensor’s nonzeros are clustered along a few dense
diagonals, then storing it in DIA [49] minimizes memory
tra!c even more while exposing vectorization opportunities,
further improving SpMV performance by up to 22% as a
result [17]. Thus, to optimize the performance of both data
import and compute, an application must convert the tensor
from COO (or DOK) to DIA (or CSR). And in applications like
preconditioned solvers and sparse neural network training
where a tensor might only be computed with a few times,
the conversion must be e!cient so that the overhead does
not outweigh gains from using an optimized format [20].

General-purpose sparse linear and tensor algebra libraries
like SPARSKIT [48] and Intel MKL [24] thus strive to support
e!ciently converting tensors between as many formats as

823

24

In conclusion…

Efficient sparse tensor conversion routines can be automatically generated from
per-format specifications

Adding support for new sparse tensor formats is straightforward

This work was
supported by:

tensor-compiler.org

Automatic Generation of E!cient
Sparse Tensor Format Conversion Routines

Stephen Chou
MIT CSAIL

Cambridge, MA, USA
s3chou@csail.mit.edu

Fredrik Kjolstad
Stanford University
Stanford, CA, USA

kjolstad@cs.stanford.edu

Saman Amarasinghe
MIT CSAIL

Cambridge, MA, USA
saman@csail.mit.edu

Abstract
This paper shows how to generate code that e!ciently con-
verts sparse tensors between disparate storage formats (data
layouts) such as CSR, DIA, ELL, and many others. We decom-
pose sparse tensor conversion into three logical phases: coor-
dinate remapping, analysis, and assembly. We then develop
a language that precisely describes how di"erent formats
group together and order a tensor’s nonzeros in memory.
This lets a compiler emit code that performs complex remap-
pings of nonzeros when converting between formats.We also
develop a query language that can extract statistics about
sparse tensors, and we show how to emit e!cient analysis
code that computes such queries. Finally, we de#ne an ab-
stract interface that captures how data structures for storing
a tensor can be e!ciently assembled given speci#c statistics
about the tensor. Disparate formats can implement this com-
mon interface, thus letting a compiler emit optimized sparse
tensor conversion code for arbitrary combinations of many
formats without hard-coding for any speci#c combination.

Our evaluation shows that the technique generates sparse
tensor conversion routines with performance between 1.00
and 2.01× that of hand-optimized versions in SPARSKIT and
IntelMKL, two popular sparse linear algebra libraries. And by
emitting code that avoids materializing temporaries, which
both libraries need for many combinations of source and
target formats, our technique outperforms those libraries by
1.78 to 4.01× for CSC/COO to DIA/ELL conversion.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Source code gen-
eration;Domain speci!c languages; •Mathematics of com-
puting → Mathematical software performance.

Keywords: sparse tensor conversion, sparse tensor assem-
bly, sparse tensor algebra, sparse tensor formats, coordinate
remapping notation, attribute query language

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7613-6/20/06.
h!ps://doi.org/10.1145/3385412.3385963

ACM Reference Format:
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020.
Automatic Generation of E!cient Sparse Tensor Format Conversion
Routines. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,
16 pages. h!ps://doi.org/10.1145/3385412.3385963

1 Introduction
Sparse multidimensional arrays (tensors) are suited for repre-
senting data in many domains, including data analytics [2, 6],
machine learning [41, 46], and others. Countless formats for
storing sparse tensors have been developed [5, 7, 8, 10, 13, 14,
23, 27, 34–37, 47, 49, 50, 53, 55, 60, 61] to accelerate kernels
like sparse matrix-vector multiplication (SpMV), and new
formats are constantly being proposed in recent literature.
No format is universally superior in every circumstance,

since the ideal format for storing a sparse tensor depends
on its structure and sparsity, the operation being performed,
and the available hardware. Applications typically need to
perform di"erent operations on the same tensor, and each
operation may require the tensor to be stored in a distinct
format for optimal performance. Importing data into a sparse
tensor, for instance, can be done e!ciently if the tensor is
constructed in the COO format [7] or the DOK format [54],
since they support e!cient appends or random insertions of
new nonzeros. Computing SpMV with the tensor, however,
can be done more than twice as fast if the tensor is stored in
CSR [55], which compresses out redundant row coordinates
and thereby reduces memory tra!c [17]. Alternatively, if
all of the tensor’s nonzeros are clustered along a few dense
diagonals, then storing it in DIA [49] minimizes memory
tra!c even more while exposing vectorization opportunities,
further improving SpMV performance by up to 22% as a
result [17]. Thus, to optimize the performance of both data
import and compute, an application must convert the tensor
from COO (or DOK) to DIA (or CSR). And in applications like
preconditioned solvers and sparse neural network training
where a tensor might only be computed with a few times,
the conversion must be e!cient so that the overhead does
not outweigh gains from using an optimized format [20].

General-purpose sparse linear and tensor algebra libraries
like SPARSKIT [48] and Intel MKL [24] thus strive to support
e!ciently converting tensors between as many formats as

823

24

In conclusion…

Efficient sparse tensor conversion routines can be automatically generated from
per-format specifications

Our technique makes it simple to fully exploit disparate tensor formats for performance

Adding support for new sparse tensor formats is straightforward

This work was
supported by:

tensor-compiler.org

Automatic Generation of E!cient
Sparse Tensor Format Conversion Routines

Stephen Chou
MIT CSAIL

Cambridge, MA, USA
s3chou@csail.mit.edu

Fredrik Kjolstad
Stanford University
Stanford, CA, USA

kjolstad@cs.stanford.edu

Saman Amarasinghe
MIT CSAIL

Cambridge, MA, USA
saman@csail.mit.edu

Abstract
This paper shows how to generate code that e!ciently con-
verts sparse tensors between disparate storage formats (data
layouts) such as CSR, DIA, ELL, and many others. We decom-
pose sparse tensor conversion into three logical phases: coor-
dinate remapping, analysis, and assembly. We then develop
a language that precisely describes how di"erent formats
group together and order a tensor’s nonzeros in memory.
This lets a compiler emit code that performs complex remap-
pings of nonzeros when converting between formats.We also
develop a query language that can extract statistics about
sparse tensors, and we show how to emit e!cient analysis
code that computes such queries. Finally, we de#ne an ab-
stract interface that captures how data structures for storing
a tensor can be e!ciently assembled given speci#c statistics
about the tensor. Disparate formats can implement this com-
mon interface, thus letting a compiler emit optimized sparse
tensor conversion code for arbitrary combinations of many
formats without hard-coding for any speci#c combination.

Our evaluation shows that the technique generates sparse
tensor conversion routines with performance between 1.00
and 2.01× that of hand-optimized versions in SPARSKIT and
IntelMKL, two popular sparse linear algebra libraries. And by
emitting code that avoids materializing temporaries, which
both libraries need for many combinations of source and
target formats, our technique outperforms those libraries by
1.78 to 4.01× for CSC/COO to DIA/ELL conversion.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Source code gen-
eration;Domain speci!c languages; •Mathematics of com-
puting → Mathematical software performance.

Keywords: sparse tensor conversion, sparse tensor assem-
bly, sparse tensor algebra, sparse tensor formats, coordinate
remapping notation, attribute query language

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7613-6/20/06.
h!ps://doi.org/10.1145/3385412.3385963

ACM Reference Format:
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020.
Automatic Generation of E!cient Sparse Tensor Format Conversion
Routines. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,
16 pages. h!ps://doi.org/10.1145/3385412.3385963

1 Introduction
Sparse multidimensional arrays (tensors) are suited for repre-
senting data in many domains, including data analytics [2, 6],
machine learning [41, 46], and others. Countless formats for
storing sparse tensors have been developed [5, 7, 8, 10, 13, 14,
23, 27, 34–37, 47, 49, 50, 53, 55, 60, 61] to accelerate kernels
like sparse matrix-vector multiplication (SpMV), and new
formats are constantly being proposed in recent literature.
No format is universally superior in every circumstance,

since the ideal format for storing a sparse tensor depends
on its structure and sparsity, the operation being performed,
and the available hardware. Applications typically need to
perform di"erent operations on the same tensor, and each
operation may require the tensor to be stored in a distinct
format for optimal performance. Importing data into a sparse
tensor, for instance, can be done e!ciently if the tensor is
constructed in the COO format [7] or the DOK format [54],
since they support e!cient appends or random insertions of
new nonzeros. Computing SpMV with the tensor, however,
can be done more than twice as fast if the tensor is stored in
CSR [55], which compresses out redundant row coordinates
and thereby reduces memory tra!c [17]. Alternatively, if
all of the tensor’s nonzeros are clustered along a few dense
diagonals, then storing it in DIA [49] minimizes memory
tra!c even more while exposing vectorization opportunities,
further improving SpMV performance by up to 22% as a
result [17]. Thus, to optimize the performance of both data
import and compute, an application must convert the tensor
from COO (or DOK) to DIA (or CSR). And in applications like
preconditioned solvers and sparse neural network training
where a tensor might only be computed with a few times,
the conversion must be e!cient so that the overhead does
not outweigh gains from using an optimized format [20].

General-purpose sparse linear and tensor algebra libraries
like SPARSKIT [48] and Intel MKL [24] thus strive to support
e!ciently converting tensors between as many formats as

823

