
Unified Compilation for Lossless Compression and

Sparse Computing

Daniel Donenfeld

CSAIL, MIT

Cambridge, USA

danielbd@mit.edu

Stephen Chou

CSAIL, MIT

Cambridge, USA

s3chou@csail.mit.edu

Saman Amarasinghe

CSAIL, MIT

Cambridge, USA

saman@csail.mit.edu

Abstract—This paper shows how to extend sparse tensor
algebra compilers to support lossless compression techniques,
including variants of run-length encoding and Lempel-Ziv com-
pression. We develop new abstractions to represent losslessly
compressed data as a generalized form of sparse tensors, with
repetitions of values (which are compressed out in storage)
represented by non-scalar, dynamic fill values. We then show
how a compiler can use these abstractions to emit efficient code
that computes on losslessly compressed data. By unifying lossless
compression with sparse tensor algebra, our technique is able
to generate code that computes with both losslessly compressed
data and sparse data, as well as generate code that computes
directly on compressed data without needing to first decompress
it.

Our evaluation shows our technique generates efficient image
and video processing kernels that compute on losslessly com-
pressed data. We find that the generated kernels are up to 16.3×

faster than equivalent dense kernels generated by TACO, a tensor
algebra compiler, and up to 16.1× faster than OpenCV, a widely
used image processing library.

Index Terms—lossless compression, compressed domain pro-
cessing, sparse tensor algebra

I. INTRODUCTION

Data, either extracted from nature or artificially generated,

are seldom random but often contain repeated patterns. Two

distinct approaches, namely lossless data compression and

sparse programming, have evolved over the years to take

advantage of such repeated patterns, enabling large data sets

to be transmitted, stored, and computed on efficiently while

fully preserving the integrity of the data.

Lossless compression techniques work by using shorter

code words to represent repeated patterns in the input, thus

preventing them from having to be redundantly stored. Ex-

amples of lossless compression techniques include run-length

encoding (RLE) and Lempel-Ziv (LZ77) compression [1],

which are building blocks in many commonly used data

formats such as PNG for images and ZIP for archive files.

By contrast, sparse programming, which is extensively used

in linear/tensor algebra and array computing, exploits the fact

that many tensors/arrays representing natural or synthetic data

contain mostly zeros (i.e., are sparse). Sparse programming

systems can exploit this property to reduce storage cost by

storing sparse tensors in specialized data formats like com-

pressed sparse row (CSR) [2] and compressed sparse fiber

(CSF) [3], which make the zeros implicit and only explicitly

store nonzero entries. Furthermore, sparse programming can

reduce the cost of computing with large data sets by orders

of magnitude by also exploiting algebraic properties of the

computation. For instance, since multiplying any value by zero

yields zero, multiplying two large sparse tensors can be done

efficiently by only accessing and computing with the nonzero

entries of the two tensors.

Unfortunately though, lossless compression and sparse pro-

gramming techniques have developed largely independently,

and consequently existing libraries and frameworks that utilize

these techniques suffer from various limitations. For one,

except for in a few domain-specific cases, existing systems

that utilize lossless compression techniques haven’t progressed

to directly compute on compressed data; instead, they must

first decompress the data before computing with it. Mean-

while, existing sparse programming systems, including hand-

implemented libraries like Intel MKL [4] and compilers like

TACO [5]–[7], cannot efficiently store and compute with data

that have many different repeated nonzeros, since sparse data

representations only compress out zeros. Furthermore, exist-

ing systems cannot simultaneously compute with losslessly

compressed data representations (like RLE and LZ77) and

sparse data representations (like CSR and CSF) efficiently. A

programming system that addresses all these limitations and

that can efficiently compute with both sparse and compressed

data requires well-optimized kernels to perform the computa-

tions. Such kernels are difficult and tedious to implement and

optimize by hand, since they are typically much more complex

than what are needed to perform the same computations with

uncompressed data.

In this paper, we propose a compiler technique to auto-

matically generate efficient code that directly perform user-

specified (tensor algebra) computations on any combination

of losslessly compressed and sparse inputs on arbitrary types.

The key idea behind our technique is to generalize the notion

of sparsity by allowing different regions of a tensor to have

different values that are treated similar to ”zeros” (i.e., fill

values) and compressed out in storage. We show how variants

of algorithms like RLE and LZ77 can be viewed as sparse

tensor formats that support this expanded notion of sparsity,

allowing a compiler to reason about lossless compression

techniques in exactly the same way as more typical sparse

tensor representations like CSR. This, in turn, lets the com-

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

205

https://www.acm.org/publications/policies/artifact-review-and-badging-current

piler use the same mechanism to generate efficient code for

computing with compressed data as well as to generate code

for computing with sparse data. Specifically, our contributions

include:

• A generalized notion of sparsity that allows repeated

sequences of nonzeros to be compressed out (i.e., fill

regions) and that allows a sparse tensor to have different

fill values in different regions of the tensor (i.e., dynamic

fills);

• New abstractions that capture lossless compression algo-

rithms like RLE and LZ77 as sparse tensor representa-

tions that support dynamic fill regions; and

• A unified mechanism for generating efficient code that

directly compute with losslessly compressed data and

sparse data.

We implement our technique, which generalizes those de-

scribed in [7] and [6], as a prototype extension to the TACO

sparse tensor algebra compiler. Our evaluation shows that

our technique generates code that are up to 16× faster than

both TACO-generated dense kernels and OpenCV [8]. While

computing directly on compressed data is sometimes slower

than processing densely stored data, we see that the former

approach yields end-to-end speedups over the latter approach

in all but one case (where the performance is equivalent),

as the latter approach incurs overhead for decompressing and

recompressing data.

II. BACKGROUND

We briefly describe lossless compression and sparse pro-

gramming, which are two distinct approaches for efficiently

storing and computing with large data sets that contain re-

peated patterns. We also provide an overview of the TACO

sparse tensor algebra compiler, which our technique extends.

A. Lossless Compression

Lossless compression algorithms, such as RLE and LZ77

compression, work by using shorter code words to represent

repeated patterns in the input, thus preventing the repeated

patterns from having to be redundantly stored.

1) RLE: RLE encodes any contiguous sequence of repeated

values as a single copy of the repeated value followed by a

count of how many times the value is repeated. Thus, a se-

quence such as 1,1,1,3,3,3,3 can be encoded using RLE

as 〈1,3〉,〈3,4〉, which is a more compact representation.

2) LZ77: LZ77 generalizes RLE by allowing repetitions

of multi-valued sequences to be efficiently encoded. Data

encoded using LZ77 consists of two kinds of tokens: value

tokens and repeat tokens. When decoding LZ77-compressed

data, value tokens, which store uncompressed subsets of the

original data, are directly copied to the output. On the other

hand, a repeat token 〈c,d〉, which consists of a count c and a

distance d, is decoded by copying c values starting at an offset

of d values from the end of the partially decoded output. A

key aspect of the LZ77 algorithm is that d can be smaller than

c in a repeat token, which implies that the sequence of values

starting from offset d is repeated until c values are copied to

0

000

5

0

00

3

7

9

8

6

02

4

Columns (J)

R
o
w

s
 (
I)

3210

2

1

0

3

pos 0 8

crd 0 0

crd

vals

1 32 32

0 1 1 12 20

5 9 3 62 78

3

3

4

(a) COO

4N

vals

pos 0 2 53

crd 0 1 01 2

8

1 2

5 9 83 2 6 7

3

4

(b) CSR

Fig. 1: The same tensor stored in two different formats.

the output. Thus, a sequence such as 1,2,3,1,2,3,1,2,3

can be encoded using LZ77 as 1,2,3,〈6,3〉, with all but the

first occurrence of the sequence 1,2,3 encoded as repeats.

Though most existing frameworks that utilize lossless com-

pression work with compressed data by first decompressing

the data before computing with it, [9] describes an approach

for performing streaming computations directly on LZ77 com-

pressed data. The key idea behind the approach is that many

computations preserve repetitions that exist in the input, so

one can avoid recomputing with repeated data by copying

repetitions directly into the output. So to increment every

element in the LZ77-compressed sequence 1,2,3,〈6,3〉,
for instance, one can directly compute on the compressed

representation by simply incrementing the value tokens and

copying over the repeat token. This produces the output

sequence 2,3,4,〈6,3〉, which correctly encodes the result

of the computation as if it was performed on the decompressed

input and then recompressed.

B. Sparse Programming

Sparse programming systems, on the other hand, are opti-

mized to compute with tensors (multidimensional arrays) that

contain mostly repeated zeros by storing such sparse tensors in

specialized formats that avoid materializing the zeros. There

exists many formats for storing sparse tensors, including CSR,

CSF, and the coordinate format (COO) [10], as illustrated in

Figure 1. These formats use different data structures to store

coordinates of nonzeros and differ in how stored values can

be efficiently iterated and accessed, but all of these formats

share the key characteristic that only nonzero entries are

explicitly stored in memory. Sparse programming systems

exploit this characteristic along with algebraic properties of

the computation (such as the fact that multiplication by zero

always yields zero) in order to avoid computing with zeros,

thereby minimizing execution time. Sparse tensor formats also

reduce data movement as only nonzeros and their coordinates

are loaded from memory.

While most existing sparse linear/tensor algebra libraries

only support sparse tensors that have zeros as fill values

(i.e., the compressed out values), some sparse programming

systems, such as GraphBLAS [11]–[13] and TACO, support

an extended notion of sparsity where any value can be the

fill value. A single value—the fill value—across the entire

data can be elided. Under this model, one can also optimize

computations other than multiplication or addition when the

fill value of the sparse operands equals the computation’s

206

0

0

1

1

3

1

5 1 3 8 2 6 7

1

0

0

2

2

2

2

3

B

rows

cols

vals

3

3

4

(a) COO

0

0

1

1 2

5 1 3 7 8 2 6

1 0

2

1

B

3

3

4

4

(b) CSR

Fig. 2: Coordinate hierarchy representations of the same sparse tensor stored
in two different formats.

annihilator (i.e., any value that, when operated on, produces

itself as the result). For example, computing the element-wise

maximum of two sparse tensors that have ∞ as fill values

can be done by only accessing and computing with the finite

entries of the tensors, since the max function has ∞ as its

annihilator (i.e., max(∞, c) = ∞ for any c).

C. Sparse Tensor Algebra Compilation

Chou et al. [6] describe how sparse tensors stored in

different formats can be represented by coordinate hierarchies

with varying structures that capture how stored nonzeros are

physically organized and encoded in memory. Figure 2 shows

coordinate hierarchies that represent the same tensor stored

in two different formats. Each level in a coordinate hierarchy

encodes stored coordinates along one dimension of the tensor,

and each path from the root to a leaf of the coordinate

hierarchy represents a stored nonzero.

Under the coordinate hierarchy abstraction, sparse tensor

formats can be decomposed into level formats that each stores

a level of a coordinate hierarchy. As Figure 3 illustrates, for

instance, the CSR format can be expressed as a composition

of the dense level format, which stores the row dimension of

a matrix, and the compressed1 level format, which stores the

column dimension. Different level formats may use different

data structures to store tensor dimensions. The dense level

format, for example, encodes coordinates along a dimension as

a contiguous range from 0 to N . By contrast, the compressed

level format stores coordinates of nonzeros in segments of a

crd array, with the bounds of each segment encoded in a pos

array. However, all level formats implement the same interface,

which exposes the level format’s capabilities as sets of level

functions that describe how underlying data structures can be

accessed. For instance, the compressed level format supports

the coordinate position iteration capability and the coordinate

append capability. The coordinate position iteration capability

is implemented by two level functions (pos_bounds and

pos_access) that together describe how coordinates stored

consecutively within a coordinate hierarchy level can be ef-

ficiently iterated. Similarly, the coordinate append capability

is implemented by a set of level functions (append_coord

and append_edges) that together describe how coordinates

of nonzeros can be appended to a coordinate hierarchy level.

1The name of the compressed level format does not imply that it utilizes
(lossless) compression, but rather that coordinates of zero entries are omitted.

pos_access(p2, i1):

 return <crd[p2],

 true>;

pos_bounds(p1):

 return <pos[p1],

 pos[p1+1]>;

4N

locate(p0, i1):

 return p0 * N + i1;

B(i1,i2)

dense compressed

pos 0 2 53

crd 0 1 01 2

8

1 2 3

insert_coord(p1, i1):

 return; append_coord(p1, i1):

 crd[p1] = i1;

append_edges(p0, pb1, pe1):

 pos[p0+1] = pe1 - pb1;

Fig. 3: Decomposition of CSR into level formats, and corresponding level
functions that specify how the associated data structures can be efficiently
accessed and assembled.

0

000

5

0

00

3

7

9

8

6

02

4

(a) Sparse tensor with

mostly zeros

1

111

5

1

11

3

7

9

8

6

12

4

(b) Sparse tensor with

mostly ones

0

43

5

0

95

3

7

9

2

7

02

7

4

(c) Dense tensor with repeated

values/sequences

Fig. 4: Tensors that represent real-world data may contain various kinds of
repetitions. Existing sparse tensor algebra compilers like TACO can efficiently
handle sparse tensors that contain mostly any single specific value (zero or
nonzero) but cannot efficiently work with tensors that contain many distinct
repeated (sequences of) values.

The coordinate hierarchy abstraction lets a compiler gener-

ate efficient code to compute with sparse tensors in arbitrary

formats, without any of the formats being hard-coded into the

compiler. In particular, the compiler can first emit code that

invokes the format’s capabilities in order to traverse coordinate

hierarchies that represent the operands. Then, invocations of

those capabilities can simply be replaced by the operand

format’s implementations of the capabilities, resulting in code

that is specialized to the operands’ formats.

III. REPRESENTING GENERALIZED FILL VALUES

As mentioned previously though, existing sparse tensor

algebra compilers such as TACO only effectively support

data representations like CSR and COO that compress out

a single fill value. However, as Figure 4 illustrates, tensors

that arise in many application domains often contain multiple

distinct values (or even sequences of values) that are repeated.

Animated videos and cartoon images, for instance, often

contain many regions of duplicated pixels, with each region

having pixels of a different color.

In this section, we first propose a generalization of fill values

that can more efficiently encode repetitions of multiple distinct

values in sparse tensors. We further propose new level formats

that use variations of RLE and LZ77 in order to losslessly

compress stored values, and we show how these level formats

can be viewed as formats that efficiently store generalized fill

values. Finally, we describe an extension to the level format

abstraction described in [6] that fully captures how generalized

fill values stored in our new level formats can be efficiently

accessed and modified. Our technique is applicable to both

207

0 1 1 01 805

Fill region: 0 1

(a) Fill regions

0 1 2 21 05 8

Fill regions: 0 1 2

(b) Dynamic fills

Fig. 5: Our generalization of fill values supports non-scalar fills (fill regions)
and different fills for different parts of a tensor (dynamic fills).

vals

pos 0 4

crd 0 2 75

a b dc

baa cbb c d

Fig. 6: An example of a vector stored in the RLE level format, with each
run of identical elements represented as a defined value followed by fills that
have the same value. This variant of RLE explicitly stores the start and end
coordinates of each run (other than the end coordinate of the last run, which
is assumed to be the size of the stored dimension). The length of each run can
be computed by taking the difference between the start and end coordinates.

integral and floating-point data, though it is better suited to

integral data since small fluctuations in otherwise identical

floating-point values can result in few or no exact repetition.

A. Non-Scalar and Dynamic Fills

While sparse tensors are typically modeled as consisting of

a single value (i.e., the fill value) that can be compressed out in

storage, we generalize this model in two ways by introducing

the concepts of fill regions and dynamic fills.

1) Fill Regions: Fill regions generalize the notion of spar-

sity by allowing for non-scalar fills. Conceptually, a fill region

is a simply a sequence of values that is tiled over an entire

tensor. At coordinates where there are no other explicitly

defined values, the tensor assumes the values of the fill region.

The number of values in a fill region is referred to as the fill

region’s size. (A scalar fill value can be viewed as a fill region

of size 1.) Figure 5a shows an example of a sparse tensor with

a fill region of size 2 and illustrates how sequences of values

can be replicated across tensors as fill regions.

2) Dynamic Fills: Dynamic fills generalize the notion of

sparsity by allowing for different parts of a tensor to have

different fill values (or, more generally, fill regions). Concep-

tually, a sparse tensor with dynamic fills can be represented as

a set of defined values in the tensor and a map from subsets of

the tensor to their corresponding fill values/regions. Figure 5b

shows an example of a sparse tensor that contains two distinct

fill regions.

B. Lossless Compression as Level Formats

As mentioned previously, RLE and LZ77 are two exam-

ples of commonly used lossless compression algorithms. We

propose two new level formats that implement variants of

these algorithms, and we show how these level formats can

be viewed as storing tensors with generalized fills.

1) Run Length Encoded (RLE): Run length encoding for-

mats typically explicitly store the run-length associated with

each value, either in a single data stream, or with the values

and run lengths stored separately. In Figure 6, we demonstrate

a variant of RLE as a level format that can efficiently store a

one-dimensional tensor (vector) containing many distinct runs

of repeated values. This level format uses the same data struc-

tures as the compressed level format (in particular, the crd

and pos arrays) to store the coordinates of defined values. In

contrast to the compressed level format though, which simply

interprets each stored coordinate (and associated value) as a

nonzero, the RLE level format additionally interprets each

stored coordinate as a point in the tensor where the fill value

changes to being the stored value. This defines the run-lengths

implicitly, using the coordinates from the crd array to store

when the value stored changes, instead of storing an explicit

length. When iterating over a tensor stored in our RLE format,

the value at each non-defined coordinate can then be assumed

to be the last explicitly-stored value that was accessed. In this

way, distinct runs of repeated values stored in our RLE format

can simply be interpreted as dynamic fill values.

The RLE level format can be used to represent any dimen-

sion of a tensor. When used to store the innermost dimension

of a tensor, the level format efficiently stores repetitions

of scalar fill values. When used to store other dimensions,

however, the level format can efficiently store repetitions of

fill regions. For example, color images can be viewed as

W×H×3 tensors, with the innermost dimension representing

the three color values for each pixel. By storing the H

dimension as RLE, one can efficiently represent repetitions

of entire pixels instead of just individual color values.

2) LZ77: Figure 7 shows how a level format that imple-

ments a variant of LZ77 can efficiently store a vector that

contains many repeated sequences of values. The level format

stores both values and repeats as sequences of elements within

the values array. Raw values are represented by a two-byte

element that has a high bit of zero and that encodes a count

n using the remaining bits, followed by n elements that each

stores a distinct uncompressed value. On the other hand, each

repeat token 〈c,d〉 is represented by a two-byte element that

has a high bit of one and that encodes c using the remaining

bits, followed by another two-byte element that stores d. As

Figure 7 illustrates, the repeat token can then be interpreted as

a point in the tensor where the fill region dynamically changes

to being the c values starting at d bytes prior in the values

array. The raw values, on the other hand, can be interpreted

as defined entries of the tensor.

C. Tracking Dynamic Fill Regions

In order to generate code to iterate over level formats that

encode dynamic fills, a compiler must be able to emit code

that keeps track of the current fill region. To enable this, we

extend the level format abstraction with a new capability that

captures how the fill region can be tracked at runtime during

iteration. We define this capability as a single function:

fill_region(pk, i1, · · ·, ik, vals)

208

vals

pos 0

ba 3 c 8 3

aa abcb c b c

13

 2 6

a b b c

Fig. 7: An example of a vector stored in the LZ77 level format, with raw
values represented as defined values and repetitions (encoded by repeat tokens)
represented as fill regions. The LZ77 sequence is a,b,c,〈8,3〉,〈2,6〉.
Elements shaded gray in the vals array have high bits of one and denote the
starts of repeat tokens. This variant of LZ77 stores distances d that represent
relative offsets within the values array as opposed to offsets within the partially
decoded sequence of elements.

-> <sp, sz, found>

This function takes, as inputs, a position pk in a coordinate

hierarchy level, the coordinates (i1, ..., ik) of the subtensor

encoded at position pk, and a reference vals to the values

array of the tensor. And, as outputs, the function is expected

to return whether or not the fill region changes at position pk

(i.e., found) and, if so, also return the new fill region itself

(stored in an array of size sz referenced by the pointer sp).

The capability to keep track of fill regions can be imple-

mented for the RLE level format as follows:

fill_region(pk, i1, · · ·, ik, vals):

return <&vals[pk * size], size, true>

Since each stored coordinate also implicitly encodes a point

where the fill region changes, the function always returns

found as true and sets the new fill region to be the segment

of the values array that corresponds to the coordinate stored

at position pk. When the level format is used to store the

innermost dimension of a tensor, the value of size is 1 as

the repetitions are of scalar values. However, when the level

format is used to store other dimensions, size instead reflects

the number of values that are in each subtensor stored by the

level format. So if, for instance, the RLE level format is used

to store the H dimension of a W × H × 3 tensor (and the

innermost dimension is stored densely), then a value of 3 for

size would reflect that repetitions are fill regions of size 3.

The same capability can also be implemented for the LZ77

level format as follows:

fill_region(pk, i1, · · ·, ik, vals):

if ((load_uint16(vals, pk) >> 15) & 1)

{

int count = load_uint16(vals, pk])

& 32767

int dist = load_uint16(vals, pk + 2])

int size = MIN(count, dist)

return <&vals[pk - size], size, true>

}

return <0, 0, false>

The function must first check for the type of the token that is

stored at position pk, since only repeat tokens encode points

at which the fill region changes. If the token is a value token,

then the function simply returns found as false. If the token

is a repeat token though, then the function uses the count and

the distance encoded by the repeat token in order to determine

the new fill region, which corresponds to the replicated values.

D. Appending Dynamic Fills

In order to support computations that store results in formats

with dynamic fills, a compiler must also be able to emit code

that inserts new fill regions into the output. To enable this, we

further extend the level format abstraction with another new

capability that captures how to append a new fill region to the

output. We also define this capability as a single function:

append_fill_region(pk, sp, sz, cnt, vals)

-> void

This function takes, as arguments, the current end position pk

of a level in the output’s coordinate hierarchy representation,

the new fill region to be appended (stored in an array of

size sz referenced by sp), and the number cnt of output

elements that this new fill region (assuming it encodes a

repeated sequence of values) is actually meant to represent.

Additionally, vals is a reference to the output values array.

The capability can be trivially implemented for the RLE

level format as a no-op, since the format stores fill regions

implicitly. On the other hand, since the LZ77 level format

encodes fill regions as repeat tokens, the fill append capability

can be implemented for the level format by code that simply

appends a repeat token to the values array, as follows:

append_fill_region(pk, sp, sz, cnt, vals):

store_uint16(vals, pk, cnt | 32768)

store_uint16(vals, pk + 2, pk - sp)

pk += 4

As we will show in Section IV-C, this enables a compiler

to, by only reasoning about appending new fill regions, emit

code that copies repetitions in the inputs directly to the output.

This, in turns, makes it possible to generate code that directly

compute on compressed data without first decompressing it.

IV. CODE GENERATION FOR GENERALIZED FILLS

In this section, we show how our technique uses the

abstractions we defined in Section III in order to generate

code that compute on sparse tensors with dynamic fill regions

and, by extension, generate code that efficiently compute on

losslessly compressed data.

A. TACO Code Generation

Our technique, which builds on the technique described

in [7], takes as input a tensor index notation statement that

declaratively defines the tensor algebra computation to be

performed. For instance, computation that alpha blends two

tensors can be expressed in tensor index notation as Cijc =
αAijc + (1 − α)Bijc, where the subscripts represent index

variables used to access the modes of each tensor. To generate

code, the compiler first lowers the tensor index notation

209

statement down to concrete index notation, which is an IR that

explicitly specifies the order of iteration over dimensions of

the operands. So, for example, the alpha blending computation

defined previously can be lowered to the concrete index

notation statement ∀i∀j∀c Cijc = αAijc + (1− α)Bijc.

The code generator then traverses the foralls (i.e., the ∀s) in

order. For each forall (over dimension I), the code generator

emits a loop (or multiple loops) that simultaneously iterates

over the operands along dimension I . Within the loop(s),

the code generator also emits if statements that, based on

which operands actually contain defined values in a particular

iteration of the loop, perform the specified computation with

defined values from those operands (and fill values from the

remaining operands). In addition, the code generator emits

code that appends computed values to the result tensor.

B. Iterating with Dynamic Fills

To support computations on sparse tensors with dynamic

fills though, our technique also emits code that keeps track of

each input tensor’s current fill value as the tensors are iterated

over. In general, such code must keep track of each tensor’s

current fill region as well as track the position of the current

fill value within the current fill region.

To keep track of a tensor B’s current fill region, the

generated code maintains a pointer (BFillRegion) to the

start of the fill region and a variable (BFillSize) that keeps

track of the size of the fill region. The generated code keeps

these variables updated for each input tensor by invoking the

fill_region level function whenever any element in the

tensor is accessed. If the level function reports that the fill

region for tensor B has changed, then BFillRegion and

BFillSize are updated to store the new fill region returned

by the level function. Lines 9–24 in Figure 8 show an example

of code that our technique emits for tracking an LZ77 tensor’s

current fill region.

To track the position of a tensor B’s current fill value

within the current fill region, the generated code additionally

maintains a variable (BFillIndex) that indexes into the fill

region. This index is initialized to zero whenever the fill region

changes, so that the index points to the start of the new fill

region. Then, when iterating over the tensor, the generated

code conceptually increments the index by one (potentially

with wraparound) for every element of the tensor that follows

the point where the fill region last changed. (To account for the

fact that some elements may be skipped when iterating over

the tensor though, the generated code compensates by instead

incrementing the index by the number of elements that were

skipped.) Lines 27–28 and 47–48 in Figure 8 show an example

of code that our technique emits for tracking the position of an

LZ77 tensor’s current fill value within the current fill region.

Our technique can additionally exploit properties of the

operands’ format in order to further optimize computations

with dynamic fills. For example, when the size of a tensor’s

fill region is statically known to be one (as is the case

with the RLE level format when used to store the innermost

dimension, for instance), there is no distinction between the

fill regions and fill values. Thus, in this case, the code

generator does not need to emit code to keep track of the

position of the tensor’s current fill value within the current

fill region. Preconditions that need to be satisfied for such

an optimization can be checked by statically analyzing the

definition of fill_region to see if the function returns the

required values for sz. Figure 9 shows an example of how our

technique applies the optimization to generate efficient code

that computes on RLE-compressed data.

C. Appending Fill Regions

If the result of an element-wise computation is stored in

a format that supports appending dynamic fill regions, our

technique further optimizes the emitted code by minimizing

the amount of computation with fill values. At coordinates

where none of the input tensors have defined values, the

generated code must use the input tensors’ fill values to com-

pute elements of the result. As Figure 10 illustrates though,

since fill values of a tensor with fill region of size S repeat

after every S elements (by definition), values of the result

must therefore also repeat after every L elements, where L

is the least common multiple (LCM) of the input tensors’ fill

region sizes. Thus, if more than L consecutive elements of the

result are computed from just the input tensors’ fill values, the

generated code instead only computes the first L elements.

As the fill region sizes can be a dynamic property of the

input tensors, this LCM computation must be done at runtime

by the generated code. When computing with formats with

only static fill region size, such as RLE, are able to elide the

LCM computation from the generated code by pre-computing

its value statically. Then, the generated code appends those

elements to the output tensor as a new fill region by invoking

the append_fill_region level function.

Lines 38–59 in Figure 8 shows how our technique applies

this optimization to generate code that directly computes on

LZ77-compressed data and produces a compressed output

without ever materializing uncompressed versions of the inputs

or output, following the same general approach as [9]. Lines

42–50 in Figure 8 compute the L necessary values, and lines

52–58 invoke the append_fill_region level function.

Similarly, Figure 9 shows how our technique applies the same

optimization to generate code that directly computes on RLE-

compressed data.

D. Optimizing Reductions

When computing the result of a reduction, such as a =
bici, the compiler is able to reduce the computation cost by

factoring out repeated multiplication as in Figure 11. When

there is a fill region in one input tensor and dense values in

another input tensor, we can factor out repeated multiplication

by the values in the fill region. This optimization also applies

with a scalar fill value, as in traditional sparse formats, and is

beneficial when the fill value is not an annihilator.

When there are multiple fill regions involved in a reduction

computation, we can further optimize the computation. The

210

1 while (piB < B1_pos[1] && piC < C1_pos[1]) {

2 if (i == iB && iBVals == 0) {

3 iB = B1Crd;

4 if (load_uint16(B_vals, piB) >> 15 & 1) == 0) {

5 iBVals = load_uint16(B_vals, piB);

6 piB += 2;

7 B1Crd += iBVals;

8 }

9 if (load_uint16(B_vals, piB) >> 15 & 1)) {

10 int32_t count = load_uint16(B_vals, piB) & 32767;

11 int32_t dist = load_uint16(B_vals, piB + 2);

12 BFillSize = MIN(B1Count, B1Dist);

13 BFillRegion = &B_vals[piB - B1_dist];

14 B1Crd += count;

15 piB += 4;

16 B1Found = true;

17 } else {

18 B1Found = false;

19 }

20 if (B1Found) {

21 iB = B1Crd;

22 BFillIndex = 0;

23 BFillValue = BFillRegion[0];

24 }

25 }

26 ...

27 if (BVals == 0)

28 BFillIndex = (BFillIndex + (i - iPrev)) % BFillSize;

29 ...

30 if (iB == i && iC == i && iBVals != 0 && iCVals != 0){

31 store_uint16(A_vals, piA, 1);

32 A_vals[piA + 2] = B_vals[piB] + C_vals[piC];

33 piA += 2;

34 piA++;

35 }

36 ...

37 else {

38 int32_t lengthsLcm = LCM(BFillSize, CFillSize);

39 int32_t coordMin = MIN(iB, iC);

40 int32_t loopBound = i + lengthsLcm;

41 int32_t startVar = piA;

42 while (i < MIN(coordMin, loopBound)) {

43 store_uint16(A_vals, piA, 1);

44 A_vals[piA + 2] = B_vals[piB] + C_vals[piC];

45 piA += 2;

46 piA++;

47 BFillIndex = (BFillIndex + 1) % BFillSize;

48 CFillIndex = (CFillIndex + 1) % CFillSize;

49 i++;

50 }

51 iPrev = i;

52 if (MIN(coordMin, loopBound) == loopBound) {

53 int32_t runValue = coordMin - i;

54 store_uint16(A_vals, piA, runValue | 32768);

55 store_uint16(A_vals, piA + 2, piA - startVar);

56 piA += 4;

57 i = coordMin;

58 }

59 continue;

60 }

61 piB += (int32_t)(iB == i);

62 iB += (int32_t)(iB == i);

63 piC += (int32_t)(iC == i);

64 iC += (int32_t)(iC == i);

65 iPrev = i++;

66 }

Fig. 8: Excerpt of code that our technique generates to add two LZ77 vectors, with the result also stored in LZ77.

1 while (piB < B1_pos[1] && piC < C1_pos[1]) {

2 int32_t iB = B1_crd[piB];

3 int32_t iC = C1_crd[piC];

4 int32_t i = min(iB,iC);

5 if (iB == i) {

6 BFillValue = (&(B_vals[piB]))[0];

7 if (iC == i) {

8 CFillValue = (&(C_vals[piC]))[0];

9 if (iB == i && iC == i) {

10 A_vals[piA] = B_vals[piB] + C_vals[piC];

11 } else if (iB == i) {

12 A_vals[piA] = B_vals[piB] + CFillValue;

13 } else {

14 A_vals[piA] = BFillValue + C_vals[piC];

15 }

16 A_crd[piA++] = i;

17 piB += (int32_t)(iB == i);

18 piC += (int32_t)(iC == i);

19 }

Fig. 9: Code that our technique generates to add two RLE vectors, with the
result also stored in RLE.

31 2 31 2 31 2 31 2

11 2 22 1 11 2 22 1

+

=

42 4 53 3 42 4 53 1

Fig. 10: When adding a vector containing repetitions of three elements to
a vector containing repetitions of two elements, the resulting vector must
contain repetitions of LCM(2, 3) = 6 elements. Our technique exploits this
to emit code that optimizes computations with fill values.

111 2 22 1 11 2 22

45 1 30 2 45 4 55 0

×

=
56(5+4+2+5+4+0)×1 + (1+0+3+4+5+5)×2 =

Fig. 11: When performing a reduction on two vectors, there is repeated
multiplication from values within a fill region. Our technique is able to
optimize reduction operations by factoring out the repeated multiplication.

compiler can first generate code to calculate the output ob-

tained by performing the element-wise multiplication between

the input tensors. Both the length of the resulting pattern, and

the number of elements which are repeated are calculated as in

section IV-C. The reduction of the element-wise intermediate

result is multiplied by the number of repetitions to calculate

the final value of reducing the input fill regions. This reduces

the total cost of computing reductions when there are multiple

fill regions.

For computations with both multiple fill regions and dense

inputs, both of the above optimizations are applied. First,

the generated code produces the element-wise output of the

multiplication operation for all of the fill regions. This single

repeated pattern can then be reduced with the dense outputs

as described above, by factoring out repeated multiplication.

While reduction operations do not directly result in com-

pressed outputs, the above optimizations reduce the compu-

tation cost of computing with compressed inputs. This is in

addition to the reduced cost of data movement of compressed

input tensors.

211

V. EVALUATION

We implement our technique as a prototype extension to

TACO. We then evaluate it against TACO without our exten-

sion (which supports dense and sparse inputs/outputs, but not

RLE or LZ77) as well as against the widely used image and

video processing library OpenCV [8]. We find that support

for lossless compression is essential for memory usage and

performance in many applications.

A. Methodology

We ran our experiments on a dual-socket Intel Xeon E5-

2680 v3 machine with 128 GB of main memory and running

Ubuntu 18.04.3 LTS. All of our experiments were run single-

threaded, with Turbo Boost disabled and execution restricted

to a single socket using numactl. Unless otherwise noted,

all of our experiments were run with a cold cache, and each

experiment was repeated at least ten times.

B. Computing on Compressed Data

We first exhibit the flexibility and performance benefits of

our techniques with micro-benchmarks on synthetic data. We

measure performance for the following computations:

• Scalar multiplication, Aij = Bij ∗ c
• Element-wise multiplication, Aij = Bij ∗ Cij

• Reduction (matrix-vector product), Ai = Bij ∗Cj , where

C is stored as an RLE vector

• Mixed operation (multiplication with a sparse mask),

Aij = Bij ∗ Cij , where C is stored as CSR

We generate integer tensors by first sampling a random

value uniformly from the range 0 to 255 and then determine

the number of copies, or run length, of each value by sampling

a random value uniformly from the range 1 to a defined upper

limit. We generate ten random matrices for each run length

upper bound of size 10, 000× 1, 000. We show the execution

time for each of the operations plotted against the upper bound

of the run length, which approximates the compression factor

in Figure 12.

There is overhead to computing on compressed data, so

for low compression ratios, depending on the computation,

our technique is initially outperformed by computing on

dense tensors. However there is a crossover point after which

computing on both the RLE and LZ77 tensors is faster. For

all of the kernels except matrix-vector product, computing

with sparse matrices is significantly worse than computing on

dense matrices, as the matrices have high density. However,

the performance of matrix-vector product also depends on the

compression of the RLE vector, which contributes to higher

variability among the Dense and Sparse cases, and also makes

computing on the CSR matrix faster. The LZ77 level format

has higher iteration costs due to the complexity of the format,

and it has no representation advantages over RLE on these

generated tensors.

C. Image Processing Applications

We evaluate our technique on two kernels used in image

processing, namely alpha blending and edge detection.

1) Alpha Blending: A common operation in the image

processing domain is alpha blending, or the weighted element-

wise sum of two images, represented by the following index

statement Aij = αBij+(1−α)Cij . We evaluate this operation

on pairs of images pulled from a subset of 2000 images from

the sketch dataset from [14]. We report the geometric mean

(geomean) speedup and size reduction compared to dense in

Figure 13. Our RLE format has the largest geomean speedup of

16.3× faster than dense and 16.1× faster than OpenCV. While

these images are very sparse with most of the pixels being

white background, they also have relatively large regions of

black. Using the RLE format, we can gain additional speedups

over traditional sparse computing, with a geomean speedup of

2.5× over CSR.

2) Medical Image Edge Detection: A common image pro-

cessing algorithm used in many fields, including medical

images, is edge detection. We implement boundary edge

detection on MRI images as described in [15]. We further

filter the output image by applying a region-of-interest (ROI)

mask, as done in [7]. The expression we compute is Outij =
(Aij∧ROIij)⊕(Bij∧ROIij) where A and B are thresholded

versions of the original image with t1 = 75% used to compute

A and t2 = 80% used to compute B. The ROI used is

generated by placing 4 rectangular regions of interest, each

40×40 pixels, in the center of the image 20 pixels apart.

We report the geomean size reduction of the input tensors

and the geomean speedup over computing over Dense tensors

in Figure 14. Using the RLE level format, we achieve a

geomean speedup of 2.6× over Dense, and 1.5× over Sparse.

While performing the computation using OpenCV is faster

than the Dense computation using TACO, mainly due to hand

vectorization, we still report a goemean speedup of 1.9× of

the RLE format over OpenCV.

D. Video Processing Applications

We evaluate our technique on two kernels used in video

processing, namely 1) compositing two videos together with

a mask and 2) brightening the video. We use 12 video clips

for our evaluation: four from the 3D-animated film Elephants

Dream, four from the 2D-animated film Sita Sings the Blues,

and four stock videos from Pexel. As all of these videos are in

color, a third index variable c is used to index the additional

mode of the input and output video frames.

1) Brightening: This operation does element-wise addition

with a constant and truncates the value at the maximum (i.e.,

255, as all of the videos are in 8-bit color).

2) Compositing: We test this operation by compositing a

subtitle image onto every frame in each of the videos. The

index expression for performing this operation on each frame

of the video is Outijc = (Fijc ∗Mij) + (Sij∗ !Mij) where F

is the input frame, S is the grayscale subtitle image, and M

is the Boolean mask.

3) Results: Figure 15 shows the storage benefits of loss-

less compression, with both RLE and LZ77 storing up to

an order of magnitude fewer explicit values than the dense

representations. Figures 17 and 18 show the execution time

212

(a) Scalar multiplication (b) Element-wise multiplication

(c) Matrix-vector product (d) Element-wise multiplication with a sparse mask

Fig. 12: Performance of micro-benchmarks on synthetic data.

(a) Data compression ratio (b) Execution time speedup

Fig. 13: Results of alpha blending experiments.

(a) Data compression ratio (b) Execution time speedup

Fig. 14: Results of edge detection experiments.

of computing directly on the given formats. While there are

cases where the execution time of computing directly on RLE

and LZ77 is faster then Dense or using OpenCV, in many

cases the execution time of computing on the compressed

data is slower. As storing video data as uncompressed is

often extremely impractical, a fairer comparison is to the total

processing time, which includes both decompression and re-

compression. We show a comparison of computing on dense

tensors using both TACO and OpenCV and computing directly

on LZ77 in Figure 16. Even though the computation time for

LZ77 is much longer then any of the other formats, the time

necessary for decompression and re-compression ensures that

computing directly on LZ77 is still faster, in all but one case

where the performance is equivalent.

VI. RELATED WORKS

In this section, we describe related works on lossless com-

pression algorithms and techniques for directly computing on

compressed data (compressed domain processing), as well as

describe related works on sparse programming.

A. Lossless Compression

While this work focuses on LZ77-style compression [1],

it is one example of a general purpose lossless compression

algorithm. LZ77 is part of a larger class of dictionary based

compressors which includes LZ78 [16], LZW [17] and LZSS

[18], which encode repetition into a dictionary to avoid redun-

dant storage. The second main class of lossless compression

algorithms is entropy encoders, includes Huffman coding [19]

and Arithmetic coding [20], [21]. These algorithms compress

data by replacing fixed length input symbols with code words

whose length is determined by the probabilities of each input

symbol in the data to be compressed.

Most general purpose compression formats use one of or

both dictionary compression and entropy coding, including

7z [22], ZIP [23], gzip [24], and bzip2 [25]. There are also

213

Fig. 15: Storage size of each saved file format for brighten. Fig. 16: Execution time of performing the subtitle computation where the files
are saved in the LZ77 format.

Fig. 17: Execution time of performing the brightening computation directly
on the saved file format.

Fig. 18: Execution time of performing the subtitle computation directly on the
saved file format.

many more formats specialized for specific kinds of data,

including audio, graphics, and video data. These formats can

take advantage of specific properties of the data they store and

compress, however they generally use dictionary and entropy

coding as a part of their algorithms.

B. Compressed Domain Processing

There are many algorithms for compressed domain process-

ing, which differ depending on the structure of the compressed

data. For example there is prior work on pattern match-

ing within compressed text [26]–[29], computing directly on

compressed databases [30], [31], and computing directly on

compressed video [9]. However, much of this work focuses

on lossy compression schemes which use the Discrete Cosine

Transform [32]–[36]. We do not consider this kind of com-

pression in our work.

Two approaches for compressing matrices for SpMV were

introduced in [37], one based on compressing the index data

structures using delta coding, and the second compressing the

values by only storing unique elements and representing them

with smaller indices.

There has also been research into compressing matrices

for linear algebra. In [38], they propose techniques for com-

pressing both the index and value data structures of sparse

matrices for matrix-vector products. The index compression

technique uses delta coding to reduce the size of the column

coordinate array. The value compression stores a array of

unique values and replaces the values array with indices into

the array of unique values. Both [39] and [40] describe systems

for compressing and computing on data matrices for common

machine learning algorithms. In both cases are limited to

a subset of matrix operations, and the specific compression

formats they designed. In [39], they partition matrices into

column groups and compress each group together, using both

RLE and offset list encoding (OLE). In OLE, they store each

value in a column with a list of coordinates it appears at,

similarly to the value compression technique from [38]. In

[40], they develop a dictionary compression scheme which

does not compress data across row or column boundaries,

however can represent repetition across a matrix by a common

dictionary for each compressed matrix.

C. Sparse Programming

Our technique builds on the sparse tensor algebra compiler

TACO [5]–[7], which implements the techniques described in

Section II-C and Section IV-A. Without our extension, TACO

does not support lossless compression techniques like RLE and

LZ77 and cannot efficiently compute with data that contain

many distinct repeated values or sequences. There also exist a

number of other compiler techniques that can generate sparse

linear algebra kernels given imperative implementations of

their dense counterparts, including MT1 [41], Bernoulli [42],

SIPR [43], and CHiLL [44]. Bernoulli uses a sparse matrix for-

mat abstraction that can also represent losslessly-compressed

data, but this abstraction exposes losslessly-compressed data to

the compiler as just fully-decompressed streams of nonzeros.

Thus, Bernoulli cannot generate code that avoid redundant

computations by directly computing on compressed data.

Meanwhile, the other techniques only support sparse matrix

representations that compress out zero elements, and thus they

cannot generate code to compute with losslessly compressed

data. In addition, GraphBLAS [11]–[13] and CTF [45] are

examples of sparse linear algebra frameworks that support

arbitrary semirings, which can have any value as the ”zero”

that is compressed out in storage. As with the technique of

though, such systems can only efficiently compute with data

that contain mostly a single value, not data that contain many

distinct repeated values or sequences.

214

Furthermore, in the context of domain-specific hardware

design, [46] describe a hierarchical fiber-tree abstraction for

sparse tensor storage, similar to the coordinate hierarchy

abstraction of [6]. The abstraction supports storing zeros using

RLE, but it does not support lossless compression of nonzero

elements.

VII. CONCLUSION

This paper shows how to build a compiler for computing

with both losslessly compressed and sparse tensors by general-

izing the notion of sparsity to handle different repeated values

within a single tensor. With our technique, the compiler is

able to generate efficient code for varied computations. We

observe speedups up to 16× over computing on dense data,

and even in the worst case we observe speedups or equivalent

performance over just decompressing the inputs, computing

on dense data, and then recompressing the result.

ACKNOWLEDGMENTS

This research was supported by DARPA SDH Award

#HR0011-18-3-0007, Applications Driving Architectures

(ADA) Research Center, a JUMP Center co-sponsored by

SRC and DARPA. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

aforementioned funding agencies.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on Information Theory,
vol. 23, no. 3, pp. 337–343, May 1977. [Online]. Available:
http://ieeexplore.ieee.org/document/1055714/

[2] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” Proceedings of

the IEEE, vol. 55, no. 11, pp. 1801–1809, 1967.

[3] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the 5th Workshop on Irregular Appli-

cations: Architectures and Algorithms. ACM, 2015, p. 5.

[4] Intel, “Intel math kernel library developer reference,”
2020. [Online]. Available: https://software.intel.com/sites/default/files/
mkl-2020-developer-reference-c.pdf.pdf

[5] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” Proceedings of the ACM on Programming

Languages, vol. 1, no. OOPSLA, pp. 1–29, Oct. 2017. [Online].
Available: https://dl.acm.org/doi/10.1145/3133901

[6] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction
for sparse tensor algebra compilers,” Proceedings of the ACM on

Programming Languages, vol. 2, no. OOPSLA, pp. 1–30, Oct. 2018.
[Online]. Available: https://dl.acm.org/doi/10.1145/3276493

[7] R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe,
and F. Kjolstad, “Compilation of Sparse Array Programming Models,”
p. 30.

[8] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.

[9] W. Thies, S. Hall, and S. Amarasinghe, “Manipulating lossless video
in the compressed domain,” in Proceedings of the seventeen ACM

international conference on Multimedia - MM ’09. Beijing, China:
ACM Press, 2009, p. 331. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1631272.1631319

[10] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205–231, 2007.

[11] T. Mattson, D. Bader, J. Berry, A. Buluç, J. Dongarra, C. Faloutsos,
J. Feo, J. R. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. E. Leis-
erson, A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo, “Standards for graph algorithm primitives,” in
IEEE High Performance Extreme Computing Conference. IEEE, 2013,
pp. 1–2.

[12] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira, “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance

Extreme Computing Conference (HPEC), 2016, pp. 1–9.

[13] T. A. Davis, “Algorithm 1000: Suitesparse:graphblas: Graph algorithms
in the language of sparse linear algebra,” ACM Trans. Math.

Softw., vol. 45, no. 4, Dec. 2019. [Online]. Available: https:
//doi.org/10.1145/3322125

[14] M. Eitz, J. Hays, and M. Alexa, “How Do Humans Sketch Objects?”
ACM Transactions on Graphics - TOG, vol. 31, Jul. 2012.

[15] K. Somkantha, N. Theera-Umpon, and S. Auephanwiriyakul, “Boundary
detection in medical images using edge following algorithm based on
intensity gradient and texture gradient features,” IEEE Transactions on

Biomedical Engineering, vol. 58, no. 3, pp. 567–573, 2011.

[16] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on Information Theory, vol. 24,
no. 5, pp. 530–536, 1978.

[17] T. Welch, “A technique for high-performance data compression,” Com-

puter, vol. 17, no. 06, pp. 8–19, jun 1984.

[18] J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,” J. ACM, vol. 29, no. 4, p. 928–951, Oct. 1982. [Online].
Available: https://doi-org.libproxy.mit.edu/10.1145/322344.322346

[19] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[20] J. J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM

Journal of Research and Development, vol. 20, no. 3, pp. 198–203, 1976.

[21] R. Pasco, “Source coding algorithms for fast data compression (ph.d.
thesis abstr.),” IEEE Trans. Inf. Theor., vol. 23, no. 4, p. 548, Sep.
2006. [Online]. Available: https://doi.org/10.1109/TIT.1977.1055739

[22] “7z Format.” [Online]. Available: https://www.7-zip.org/7z.html

[23] PKWare, “.ZIP File Format Specification,” Jul. 2020. [Online].
Available: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.
TXT

[24] P. Deutsch, “Rfc1952: Gzip file format specification version 4.3,” USA,
1996.

[25] “bzip2 : Home.” [Online]. Available: https://sourceware.org/bzip2/

[26] A. Amir, G. Benson, and M. Farach, “Let Sleeping Files Lie: Pattern
Matching in Z-Compressed Files,” Journal of Computer and System

Sciences, vol. 52, no. 2, pp. 299–307, Apr. 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000096900239

[27] T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, “A
unifying framework for compressed pattern matching,” in 6th Interna-

tional Symposium on String Processing and Information Retrieval. 5th

International Workshop on Groupware (Cat. No.PR00268), Sep. 1999,
pp. 89–96.

[28] T. Gagie, P. Gawrychowski, and S. J. Puglisi, “Approximate
pattern matching in LZ77-compressed texts,” Journal of Discrete

Algorithms, vol. 32, pp. 64–68, May 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570866714000719

[29] A. Amir and C. Benson, “Efficient two-dimensional com-
pressed matching,” in 1992 Data Compression Confer-

ence. Los Alamitos, CA, USA: IEEE Computer Society,
mar 1992, pp. 279,280,281,282,283,284,285,286,287,288. [On-
line]. Available: https://doi-ieeecomputersociety-org.libproxy.mit.edu/
10.1109/DCC.1992.227453

[30] S. Aghav, “Database compression techniques for performance optimiza-
tion,” in 2010 2nd International Conference on Computer Engineering

and Technology, vol. 6, 2010, pp. V6–714–V6–717.

[31] D. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in Proceedings of

the 2006 ACM SIGMOD international conference on Management

of data, ser. SIGMOD ’06. New York, NY, USA: Association for
Computing Machinery, Jun. 2006, pp. 671–682. [Online]. Available:
http://doi.org/10.1145/1142473.1142548

[32] B. Smith and L. Rowe, “Algorithms for manipulating compressed
images,” IEEE Computer Graphics and Applications, vol. 13, no. 5,

215

http://ieeexplore.ieee.org/document/1055714/
https://software.intel.com/sites/default/files/mkl-2020-developer-reference-c.pdf.pdf
https://software.intel.com/sites/default/files/mkl-2020-developer-reference-c.pdf.pdf
https://dl.acm.org/doi/10.1145/3133901
https://dl.acm.org/doi/10.1145/3276493
http://portal.acm.org/citation.cfm?doid=1631272.1631319
http://portal.acm.org/citation.cfm?doid=1631272.1631319
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi-org.libproxy.mit.edu/10.1145/322344.322346
https://doi.org/10.1109/TIT.1977.1055739
https://www.7-zip.org/7z.html
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://sourceware.org/bzip2/
https://www.sciencedirect.com/science/article/pii/S0022000096900239
https://www.sciencedirect.com/science/article/pii/S1570866714000719
https://doi-ieeecomputersociety-org.libproxy.mit.edu/10.1109/DCC.1992.227453
https://doi-ieeecomputersociety-org.libproxy.mit.edu/10.1109/DCC.1992.227453
http://doi.org/10.1145/1142473.1142548

pp. 34–42, Sep. 1993, conference Name: IEEE Computer Graphics and
Applications.

[33] B. C. Smith and L. A. Rowe, “Compressed domain processing
of jpeg-encoded imaages,” Real-Time Imaging, vol. 2, no. 1, pp.
3–17, 1996. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1077201496900029

[34] B. Shen and I. K. Sethi, “Convolution-Based Edge Detection for
Image/Video in Block DCT Domain,” Journal of Visual Communications

and Image Representation, vol. 7, pp. 411–423, 1996.
[35] Bo Shen, I. Sethi, and V. Bhaskaran, “DCT convolution and its

application in compressed domain,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 8, no. 8, pp. 947–952, Dec. 1998.
[Online]. Available: http://ieeexplore.ieee.org/document/736723/

[36] G. Mandyam, N. Ahmed, and N. Magotra, “Lossless Image
Compression Using the Discrete Cosine Transform,” Journal of Visual

Communication and Image Representation, vol. 8, no. 1, pp. 21–26,
Mar. 1997. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S1047320397903230

[37] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing sparse
matrix-vector multiplication using index and value compression,” in
Proceedings of the 5th Conference on Computing Frontiers, ser. CF ’08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
87–96. [Online]. Available: https://doi.org/10.1145/1366230.1366244

[38] K. Kourtis, G. Goumas, and N. Koziris, “Improving the performance
of multithreaded sparse matrix-vector multiplication using index and
value compression,” in 2008 37th International Conference on Parallel

Processing, 2008, pp. 511–519.

[39] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald,
“Compressed linear algebra for declarative large-scale machine
learning,” Communications of the ACM, vol. 62, no. 5, pp. 83–91, Apr.
2019. [Online]. Available: https://dl.acm.org/doi/10.1145/3318221

[40] F. Li, L. Chen, Y. Zeng, A. Kumar, J. F. Naughton, J. M. Patel,
and X. Wu, “Tuple-oriented Compression for Large-scale Mini-batch
Stochastic Gradient Descent,” Proceedings of the 2019 International

Conference on Management of Data, pp. 1517–1534, Jun. 2019, arXiv:
1702.06943. [Online]. Available: http://arxiv.org/abs/1702.06943

[41] A. J. C. Bik and H. A. G. Wijshoff, “Compilation techniques for sparse
matrix computations,” in International Conference on Supercomputing.
ACM, Jul. 1993, pp. 416–424.

[42] V. Kotlyar, K. Pingali, and P. Stodghill, “A relational approach to the
compilation of sparse matrix programs,” in Euro-Par Parallel Process-

ing. Passau, Germany: Springer, 1997, pp. 318–327.
[43] W. Pugh and T. Shpeisman, “Sipr: A new framework for generating

efficient code for sparse matrix computations,” in Languages and

Compilers for Parallel Computing. Springer, 1999, pp. 213–229.
[44] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for

sparse matrix code,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI 2015, 2015, pp. 521–
532.

[45] E. Solomonik and T. Hoefler, “Sparse tensor algebra as a parallel
programming model,” arXiv preprint arXiv:1512.00066, 2015.

[46] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient
processing of deep neural networks,” Synthesis Lectures on Computer

Architecture, vol. 15, no. 2, pp. 1–341, 2020. [Online]. Available:
https://doi.org/10.2200/S01004ED1V01Y202004CAC050

216

https://www.sciencedirect.com/science/article/pii/S1077201496900029
https://www.sciencedirect.com/science/article/pii/S1077201496900029
http://ieeexplore.ieee.org/document/736723/
https://linkinghub.elsevier.com/retrieve/pii/S1047320397903230
https://linkinghub.elsevier.com/retrieve/pii/S1047320397903230
https://doi.org/10.1145/1366230.1366244
https://dl.acm.org/doi/10.1145/3318221
http://arxiv.org/abs/1702.06943
https://doi.org/10.2200/S01004ED1V01Y202004CAC050

	Introduction
	Background
	Lossless Compression
	RLE
	LZ77

	Sparse Programming
	Sparse Tensor Algebra Compilation

	Representing Generalized Fill Values
	Non-Scalar and Dynamic Fills
	Fill Regions
	Dynamic Fills

	Lossless Compression as Level Formats
	Run Length Encoded (RLE)
	LZ77

	Tracking Dynamic Fill Regions
	Appending Dynamic Fills

	Code Generation for Generalized Fills
	TACO Code Generation
	Iterating with Dynamic Fills
	Appending Fill Regions
	Optimizing Reductions

	Evaluation
	Methodology
	Computing on Compressed Data
	Image Processing Applications
	Alpha Blending
	Medical Image Edge Detection

	Video Processing Applications
	Brightening
	Compositing
	Results

	Related Works
	Lossless Compression
	Compressed Domain Processing
	Sparse Programming

	Conclusion
	References

