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Abstract

Tensor algebra is a powerful tool for computing on multidimensional data and has
applications in many fields. The number of possible tensor operations is infinite, so
it is impossible to manually implement all of them to operate on different tensor
dimensions. The Tensor Algebra Compiler (taco) introduced a compiler approach to
automatically generate kernels for any compound tensor algebra operation on any
input tensor formats.

In this thesis, we present a new API for the taco library. The API removes the
need to call compiler methods with the introduction of a delayed execution frame-
work. Additionally, the API introduces multiple important tensor algebra features
previously unavailable in taco. Finally, we propose extensions to taco’s code genera-
tion algorithm to automatically generate tensor API methods for any tensor format.

The proposed API makes taco code cleaner, shorter and more elegant. Further-
more, the extensions to its code generation algorithm make the API scalable to new
formats and operations.

Thesis Supervisor: Saman Amarasinghe
Title: Professor and Associate Department Head
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Chapter 1

Introduction

Tensor algebra is a powerful tool for computing on multidimensional data and has

practical applications in fields ranging from data analytics and machine learning to

the physical sciences and engineering [1, 2, 3, 8, 16, 12]. Tensors generalize matrices

to any number of dimensions and represent multilinear relationships. Real-world

applications often operate on tensors that are both very large and extremely sparse,

meaning most components are zeros. For example, a tensor encoding product reviews

on Amazon [17] contains 1.5× 1019 components, but only 1.7× 109 of them are non-

zero.

Routines to compute tensor operations (tensor kernels) can be complex for a num-

ber of reasons. Sparse input tensors are compressed into indexed data structures that

the kernels must operate on. Furthermore, many operations require only non-zero

output values should be produced, yet the memory layout of the resulting tensor is

dependent on which input tensors contribute what non-zero values. Finally, sparse

tensor data structures typically do not support constant-time random access, so ker-

nels must carefully orchestrate co-iteration over multiple data structures to achieve

good performance.

Standard algebra libraries provide a limited set of hand-optimized operations

which allow programmers to compute compound operations through a sequence of

supported operations using temporary tensors. This reduces locality and efficiency,

and for some compound operations the temporaries are much larger than the kernel’s
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inputs and output. Moreover, the implementation of kernels to compute compound

tensor expressions can vary largely depending on the dimensionality of the tensors,

the operations between tensors, and the formats of each one of the tensors. A tensor

expression can involve any number of tensors of any possible order, and any combina-

tion of algebraic operations between them. Additionally, the data of each tensor can

be stored in one of many possible tensor formats. All of these factors lead to a com-

binatorial explosion of all possible compound operations, which makes it infeasible to

write optimized code for each one of them by hand.

Recently, Kjolstad et al. proposed the first compiler technique to generate kernels

for all tensor algebra expressions [15]. The Tensor Algebra Compiler (taco) is a

C++ library which generates efficient imperative code to compute tensor expressions

entirely from tensor index notation and simple format descriptors that fully specify

the desired computation and the tensor data structures. This compiler approach turns

any complex compond tensor expressions into single kernel, which addresses locality

issues observed in other approaches, and allows for expression-wide optimizations

and reductions to achieve increased performance. Furthermore, taco presents a level-

based abstraction that captures how to efficiently access different data structures that

encode individual tensor dimensions. These per-dimension formats can be composed

in arbitrary order to create a large variety of tensor formats, all of which are supported

by taco.

With its code generating capabilities on arbitrary tensor expressions and a huge

variety of supported tensor formats, taco provides an outstanding amount of func-

tionality. Due to the compiler nature of the library however, taco’s interface is hard

to use, and leads to code that is hard to read. Consider, for instance, the syntax

example for computing sparse matrix-vector multiplication shown in figure 1-1. The

figure compares the old syntax of taco to Eigen [10], a popular linear algebra library.

taco performs at-run-time compilation to generate the code used to compute user-

defined tensor expressions. users must then specify when when each operation should

be compiled, assembled and computed (lines 27-29), as well as when tensor values are

packed into their respective data structure (lines 20-21).

12



1 // taco SpMV
2
3 // Create formats
4 Format csr({Dense ,Compressed });
5 Format dv({ Dense });
6
7 // Create operands
8 Tensor <double > a({3}, dv);
9 Tensor <double > B({3,4}, csr);

10 Tensor <double > c({4}, dv);
11
12 // Insert data into B and c
13 B.insert ({0,0}, 1.0);
14 B.insert ({1,2}, 2.0);
15 B.insert ({2,1}, 3.0);
16 c.insert ({0}, 2.0);
17 c.insert ({1}, 6.0);
18
19 // Pack inserted data
20 B.pack ();
21 c.pack ();
22
23 // SpMV index notation
24 IndexVar i, j;
25 a(i) = B(i,j) * c(j);
26
27 a.compile ();
28 a.assemble ();
29 a.compute ();
30
31 // Print the output
32 std::cout << a << std::endl;

1 // Eigen SpMV
2
3 // Create operands
4 VectorXd a(3);
5 SparseMatrix <double > B(3,4)
6 VectorXd c(4);
7
8 // Insert data into B and c
9 B(0,0) = 1.0;

10 B(1,2) = 2.0;
11 B(2,1) = 3.0;
12 c(0) = 2.0;
13 c(1) = 6.0;
14
15 // SpMV index notation
16 a = B * c;
17
18 // Print the output
19 std::cout << a << std::endl;

Figure 1-1: SpMV syntax comparison between taco(left) and Eigen(right).

In addition, the taco tensor interface lacks important tensor manipulation methods

available in most traditional libraries, and therefore expected by users. This motivates

the need for a simple tensor interface that hides the taco compiler. In Chapter 4, we

describe a new tensor interface which simplifies taco syntax and extends the set of

tensor methods available; figure 1-2 shows an example that uses the new API. Then

we then introduce extensions to taco which enhance the range of operations that can

be expressed through taco’s format abstraction and index notation.

The new tensor interface removes the need to call any of the tensor compiler meth-

ods (pack, compile, assemble, compute). This is achieved via a new lazy execution

framework, in which compiler method calls occur automatically when needed. The

use of compiler methods therefore becomes optional for users with the new API. The

lazy execution framework’s design is described in Chapter 5.

Given the number of formats supported by taco, it is unfeasible to hand-implement

13



1 // Create formats
2 Format csr({Dense ,Compressed });
3 Format dv({ Dense });
4

5 // Create operands
6 Tensor <double > a({3}, dv);
7 Tensor <double > B({3,4}, csr);
8 Tensor <double > c({4}, dv);
9

10 // Insert data into B and c
11 B(0,0) = 1.0;
12 B(1,2) = 2.0;
13 B(2,1) = 3.0;
14 c(0) = 2.0;
15 c(1) = 6.0;
16

17 // Form a tensor -vector multiplication expression
18 IndexVar i, j;
19 a(i) = B(i,j) * c(j);
20

21 // Print the output
22 std::cout << a << std::endl;

Figure 1-2: New taco API SpMV syntax.

tensor interface methods to access each possible format. Similarly, attempting to

implement methods that address all formats simultaneously leads to complicated and

slow code that does not scale with the addition of new formats (such as the tensor

iterating routines implemented for dense and compressed mode formats in taco). In

Chapter 6 we describe how to leverage and extend taco’s code generation capability

to generate code specific to each supported tensor format that executes different

tensor methods. We introduce a set of new operations to be supported by taco’s code

generation algorithm, along with details about how these operations can be used

to generate code to execute additional interface methods. The algorithm works by

emitting code that efficiently iterates and merges coordinate hierarchy representations

of the tensor operands based on high-level characteristics of each format’s access

patterns. A simple inlining pass then specializes the emitted code to work with

specific tensor formats and target runtime environments. The proposed operations

introduce modifications to existing inlining specializations, without changing any of

the algorithms logic.

To summarize, we make the following contributions:

Tensor API We describe a new tensor interface which encompasses an ex-
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tended set of features, and traditional library syntax (Chapter 4), along with

extensions to the format and index notation abstractions which allow expressing

new tensor operations.

Lazy Execution Framework We introduce a lazy execution framework (Chap-

ter 5), which automatically executes compiler methods as needed.

Code Generation We present new operations to be supported by the taco

code generation algorithm, and describe how code generation can be used to

generate format specific implementations of tensor methods (Chapter 6).

We implement our tensor interface and the lazy execution framework as part of

the open-source tensor algebra compiler taco. The focus on tensor algebra syntax of

our interface makes taco code simpler and easier to read, and provides increased code

portability between taco and other tensor and linear algebra libraries. We discuss

different design decisions of our interface in Chapter 8 providing insight regarding

design goals and language restrictions which influenced our design.
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Chapter 2

Motivating Example

Tensor methods are an core element of taco’s syntax and functionality. While ten-

sor reads and writes, and operation declaration dictate what should happen during

program execution, compiler methods determine how and when. In contrast, tradi-

tional libraries do not perform at-run-time compilation, so compiler methods are not

required; all tensor operations occur at the moment the operation is declared.

Compiler methods provide users with fine-grained control over when each step of

the tensor computation occurs, which can be leveraged to avoid redundant compu-

tations and to measure performance. However, the constant necessity of compiler

methods also leads to increased code size and syntax complexity. As an example,

consider taco syntax of a simple routine for exponentiating a square matrix A to the

𝑘th power by creating a Result matrix which aggregates the result of multiplying A

𝑘 times. To perform this routine, a temporary tensor is required to store an interme-

diate result, since taco currently does not allow any given tensor to appear on both

sides of a tensor assignment expression (lines 15-16,21-22.)

Figure 2-1 exemplifies the simplicity and clarity introduced by the new API. More-

over, correct implementation of many routines require the in-code location where an

operation in defined and where it is executed to be distinct, which leads to pieces

of code that are conceptually unintuitive and hard to read. For example, the ex-

ponentiation routine declares two tensor expressions once in its main body (lines

15-19), which are later executed multiple times within the loop with calls to assemble

17



1 // Return a tensor representing A**k
2 Tensor <double > exponentiate(
3 Tensor <double >& A, double k) {
4 Tensor <double > R = Tensor <double >(
5 A.getDimensions (), A.getFormat ());
6 Tensor <double > Temp = Tensor <double >(
7 A.getDimensions (), A.getFormat ());
8
9 IndexVar i,j,k;

10 R(i,j) = A(i,j);
11 R.compile ();
12 R.assemble ();
13 R.compute ();
14
15 Temp(i,j) = R(i,k) * A(k,j);
16 Temp.compile ();
17
18 R(i,j) = Temp(i,j);
19 R.compile ();
20 for (int i = k; i > 1; i--) {
21 Temp.assemble ();
22 Temp.compute ();
23 R.assemble ();
24 R.compute ();
25 }
26 return R;
27 }

1 // Return a tensor representing A**k
2 Tensor <double > exponentiate(
3 Tensor <double >& A, double k) {
4 Tensor <double > R = Tensor <double >(
5 A.getDimensions (), A.getFormat ());
6 Tensor <double > Temp = Tensor <double >(
7 A.getDimensions (), A.getFormat ());
8
9 IndexVar i,j,k;

10 R(i,j) = A(i,j);
11
12
13
14
15
16
17
18
19
20 for (int i = k; i > 1; i--) {
21 Temp(i,j) = R(i,k) * A(k,j);
22
23 R(i,j) = Temp(i,j);
24
25 }
26 return R;
27 }

Figure 2-1: Exponentiation routine syntax comparison between the current(left) and
new(right) APIs.

and compute (lines 21-24.) By making the use of compiler methods optional, the

new API simplifies taco syntax, and completely removes the conceptual separation

between expression definition and execution that compiler methods introduce.

The example presented shows the advantages of the new tensor interface for taco

in terms of syntax size and readability. In Chapter 3 we describe the new API,

highlighting the differences between it and the old API.
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Chapter 3

Tensor Algebra Compiler Background

The Tensor Algebra Compiler[15, 14] (taco) is a C++ library that allows users to

define and execute code to compute any tensor algebra operations. The library ac-

complishes this with a compiler that generates code specific to each tensor operation

requested by the user, depending on the type of operation and the formats of the input

and output tensors. Taco takes in user-defined tensor index notation, and performs

online compilation to provide kernels to compute the specified operation.

Traditional tensor and linear algebra libraries such as the Eigen linear algebra

library [10], or the MATLAB Tensor Toolbox [4] support a fixed set of hand im-

plemented operations for specific input and output operand formats. This approach

allows developers to focus on developing a small set of highly optimized operations

which can be composed to compute more complex expressions. While the set of

hand optimized operations can indeed achieve outstanding performance results, per-

formance suffers when computing compound expressions due to reduced locality and

the need for intermediate temporary tensors. Yet there exists an infinite number of

possible tensor algebra expressions, so it is impossible to hand implement and opti-

mize all of them. The compiler approach introduced by taco addresses this problem

by automatically generating the code to compute compound expressions.

The taco library provides a set of C++ abstractions to represent different tensor

algebra concepts, such as tensors, tensor formats, tensor operations, etc. This section

introduces some of the most relevant abstractions, which will be referenced throughout
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the rest of this thesis.

Figure 3-1 demonstrates how to use taco to compute a tensor-times-vector multi-

plication. Tensor objects can be created by specifying the dimensions of the tensor,

the type of its entries, and its storage format. The storage format of a tensor is in turn

declared by creating a Format object which specifies the data structure which will

hold the tensor values, describing the storage kind of each tensor level and the order

in which levels are stored. On lines 1-8, A is declared as a CSR matrix, B as a CSF

tensor, and c as a compressed vector. Tensors that are inputs to computations can

be initialized with user-defined data by specifying the coordinates and values of all

non-zero components with the insert method, and then invoking the pack method

to store the tensor in the desired storage format, as seen in lines 10-17.

A variant of the tensor index notation developed by Ricci-Curbastro and Levi-

Civita [18], from now on referred as Index notation, is used to describe tensor compu-

tation as a scalar expression where tensors are indexed by index variables (IndexVar)

in lines lines 19-20. Index variables range over the tensor dimensions they index and

determine how the different components in the operands are combined during ten-

1 Format csr({Dense ,Compressed });
2 Tensor <double > A({16 ,32}, csr);
3

4 Format csf({ Compressed ,Compressed ,Compressed });
5 Tensor <double > B({16 ,32 ,100} , csf);
6

7 Format sv({ Compressed });
8 Tensor <double > c({100} , sv);
9

10 B.insert ({0,0,0}, 1.0);
11 B.insert ({1,2,0}, 2.0);
12 B.insert ({1,2,1}, 3.0);
13 B.pack ();
14

15 c.insert ({0}, 3.0);
16 c.insert ({1}, 6.0);
17 c.pack ();
18

19 IndexVar i, j, k;
20 A(i,j) = B(i,j,k) * c(k);
21

22 A.compile ();
23 A.assemble ();
24 A.compute ();

Figure 3-1: Old taco API tensor-times-vector multiplication syntax.

20



sor operation. Operator overloading is used to make tensor operations mirror their

mathematical definition. Summation reductions are implied over index variables that

only appear on the right-hand side of an expression.

Calling compile on the target of a tensor algebra computation (A in the example)

triggers the generation of kernels to assemble and compute the operation declared

by the index notation. Based on user instructions, taco generates either C or CUDA

code, and then calls the system compiler to compile it to a dynamic library, which

is dynamically linked via dlopen. This makes the assemble and compute functions

available for later calls.

The assemble method assembles the sparse index structure of the output tensor

and allocates memory for it. Finally, the actual computation is performed via the

compute method, which execute the code generated by compile. By separating the

output assembly from the actual computation, taco enables users to assemble output

tensors once and then recompute the defined operation multiple times.

There exist many formats for storing sparse tensors, each of which is ideal under

specific circumstances depending on the structure and sparsity of the data, the com-

putation, and the hardware. Computing operations with different existing formats

however requires specialized code for every combination of operand tensor formats,

which makes it challenging to support many formats simultaneously.

In order to support different tensor formats, taco defines six per-dimension formats

that can be composed in a hierarchical fashion. By composing these per-dimension

formats, it is possible to recreate variants of many tensor formats, as well as many

generalizations of these formats for higher order tensors [15, 7].

The idea of per-dimension formats can best be understood by viewing tensor

storage as a composition of levels that each encode coordinates along one tensor

dimension. The different levels implicitly follow the order imposed by the tensor

coordinates, generating a coordinate hierarchy. Entries at each level of the hierarchy

then refer to elements in the following level, but the levels are otherwise independent.

The tensor values are stored as the bottom level of the hierarchy.

Each per-dimension format supports a set of capabilities, or functions that the
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format is capable of performing. In addition, each format possesses a set of proper-

ties which reflect invariants that are explicitly enforced or implicitly assumed by the

underlying physical format index. The code generation algorithm implemented by

taco uses the properties and capabilities of each coordinate hierarchy level to deter-

mine the best way to simultaneously iterate over the tensors involved in each tensor

expression at a high level, as well as how to access and store values in each of them.

Taco is then capable of generating code to operate on any format constructed by

composing taco’s per-dimension formats.
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Chapter 4

The Lazy Execution API

APIs play an important role in developing useful software tools. Clear, simple in-

terfaces promote usability and lower the barrier of entry for new users to adopt the

tool. Furthermore, users expect consistency throughout tools that address similar

problems, which in turn promotes code portability.

The new taco API extends the set of operations available in taco and simplifies its

syntax. It is now closer to traditional tensor and linear algebra interfaces. Figure 4-1

presents the same tensor-times-vector multiplication shown previously in Figure 3-1,

but implemented in the new interface.

1 Format csr({Dense ,Compressed });
2 Tensor <double > A({16 ,32}, csr);
3

4 Format csf({ Compressed ,Compressed ,Compressed });
5 Tensor <double > B({16 ,32 ,100} , csf);
6

7 Format sv({ Compressed });
8 Tensor <double > c({100} , sv);
9

10 B(0,0,0) = 1.0;
11 B(1,2,0) = 2.0;
12 B(1,2,1) = 3.0;
13

14 c(0) = 3.0;
15 c(1) = 6.0;
16

17 IndexVar i, j, k;
18 A(i,j) = B(i,j,k) * c(k);

Figure 4-1: New taco API sparse tensor-times-vector multiplication syntax.
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As shown in the figure in lines 10-15, the new API introduces tensor component

access via operator overloading, indexing tensors with an integer coordinate location

instead of the index variable indexing used for index notation. Additionally, syntax

is more compact. Namely, calls to the compiler methods pack, compile, assemble

and compute are no longer required.

4.1 The Tensor Class

The Tensor class is the main interface between users and taco. It allows users to

reason about tensors and tensor operations at a high level without worrying about

the different arrays and data structures storing tensor data, or the specifics of how

tensor operations are implemented. Tensor objects let users interact with tensor data

to read, write and print values stored. Tensor operations are also defined through

Tensor objects via index notation.

The Tensor class does work behind the scenes to provide a simple API to the user.

It creates the data structures used to store tensor data, handles memory allocation,

and packs inserted values into the right tensor format for the user. When a tensor

operation is declared by the user the Tensor class automatically performs code com-

pilation for the operation, and ensures that all tensor computations are executed in

the appropriate order before the user accesses the resulting data.

In taco there are two C++ classes that represent tensors: Tensor and TensorBase.

Both classes provide largely the same functionality, and the main difference between

them is that TensorBase is a regular C++ class and Tensor is a class template.

Tensor takes in as template arguments the order of the tensor and the data type of

the elements stored in the tensor. This prevents dynamic memory allocation, and

improves the performance of the API overall. On the other hand, TensorBase takes

in its tensor order and data type through its constructor. (Since taco performs online

compilation, tensor order and data type are not strictly necessary at compile time.)

The TensorBase class can therefore be used to write fully functional taco code with

no prior knowledge about the input tensors.
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The new interface classifies methods in the Tensor class into four major categories:

constructor, metadata, read/write, and compiler methods. The distinction between

read, write, and compiler methods comes into play in the lazy execution framework,

and will be elaborated in Chapter 5.

4.1.1 Constructor Methods

Constructor methods are used to instantiate new Tensor objects. This category

consists mainly of Tensor class constructors, but other routines to create new tensors

(such as the transposition operation, and some file IO functions.)

The Tensor class has many constructors, which allow varying degrees of metadata

specification. Namely choosing the tensor’s name, the data type of the stored values,

tensor dimensions, and the storage data structure to be used via the tensor’s format.

4.1.2 Metadata Methods

Metadata methods refer to any methods that are used to extract tensor metadata,

such as tensor name, order, dimensions, format, or component type.

Additionally, metadata methods let users set and get the tensor TensorStorage

object, which stores the tensor values in whichever format was specified for the tensor

during creation. Direct interaction with the storage object can break the tensor

abstraction imposed by the tensor interface, but it is necessary to allow users to

efficiently perform a number of operations not currently supported by taco.

4.1.3 Read/Write Methods

This category encompasses all methods which allow the user to access and modify

values stored in the tensor without making any modifications to it. This includes

reading and writing individual values stored in a tensor via the at and insert meth-

ods, iterating over tensor contents using the standard C++ begin and end methods,

different routines and tensor copying.
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The new API introduces the at method, which allows users to access values stored

at specific tensor coordinates. This functionality is unavailable in the old taco inter-

face, which requires users to iterate over all tensor values to find the component of

interest. Similarly, the insert method inserts a tensor value to any location specified

with tensor coordinates. Figure 4-2 exemplifies the use of insert and at (left).

1 Format csr({Dense ,Compressed });
2 Tensor <double > A({16 ,32}, csr);
3
4 Format csf(
5 {Compressed ,Compressed ,Compressed });
6 Tensor <double > B({16 ,32 ,100} , csf);
7
8 Format sv({ Compressed });
9 Tensor <double > c({100} , sv);

10
11 // Insert Values using insert method
12 B.insert ({0,0,0}, 1.0};
13 B.insert ({1,2,0}, 2.0};
14 B.insert ({1,2,1}, 3.0};
15
16 c.insert ({0}, 3.0);
17 c.insert ({0}, 6.0);
18
19 IndexVar i, j, k;
20 A(i,j) = B(i,j,k) * c(k);
21
22 // Read Values using at method
23 double x = A.at({0 ,0});
24 double y = x * A.at ({12 ,10});

1 Format csr({Dense ,Compressed });
2 Tensor <double > A({16 ,32}, csr);
3
4 Format csf(
5 {Compressed ,Compressed ,Compressed });
6 Tensor <double > B({16 ,32 ,100} , csf);
7
8 Format sv({ Compressed });
9 Tensor <double > c({100} , sv);

10
11 // Insert Values using ScalarAccess
12 B(0,0,0) = 1.0;
13 B(1,2,0) = 2.0;
14 B(1,2,1) = 3.0;
15
16 c(0) = 3.0;
17 c(0) = 6.0;
18
19 IndexVar i, j, k;
20 A(i,j) = B(i,j,k) * c(k);
21
22 // Read Values using ScalarAccess
23 double x = A(0,0);
24 double y = x * A(12 ,10);

Figure 4-2: Comparison of using insert and at methods (left) and access methods
(right) for interacting with tensor values.

The API also provides a new method for inserting multiple components at a

time called setFromComponents. This method provides similar functionality to the

setFromTriplets method available for sparse matrices in Eigen [10]. The method

takes in any collection with begin and end methods that store tensor Components, and

bulk inserts them to the tensor in a single action. The user can optionally specify a

duplicate policy, which determines how insertion of multiple components to the same

coordinate is be resolved.

Access methods are a special kind of read/write methods that return Access ob-

jects. Access objects wrap their respective tensor object, and enable additional tensor

functionality, such as read/write access to tensor values, and writing tensor index no-

tation. Access methods do not interact with the tensor directly (performing reads or

26



1 vector <Component <double >> componentList;
2 componentList.push_back ({0,0,0}, 1.0);
3 componentList.push_back ({1,2,0}, 2.0);
4 componentList.push_back ({1,2,1}, 3.0);
5
6 Format csf(
7 {Compressed ,Compressed ,Compressed });
8 Tensor <double > B({16 ,32 ,100} , csf);
9

10 B.setFromComponents(componentList );
11
12 ...

1 template <int Order , typename CType >
2 class Component {
3 public:
4 Component ();
5 Component(Coordinate <Order > coordinate ,
6 CType value);
7
8 int coordinate(int mode) const;
9 Coordinate <Order > coordinate () const;

10
11 CType& value() const;
12
13 private:
14 Coordinate <Order > coord;
15 CType val;
16 };

Figure 4-3: New taco API component access functionality (left) and the Component
interface (right).

writes for example), but rather enable more elegant syntax for the users to interact

with tensors. The main purpose of access methods and objects is to enable syntax

that resembles mathematical tensor indexing.

Access objects are created with the overloaded operator() method. Each access

object stores a reference to the tensor which created it. It also contains metadata

that is passed in as argument to the operator() call which determines how the access

interacts with the tensor.

Access objects are created by calling operator() with index variables as input,

and are used to write tensor index notation. The stored index variables indicate

how the tensor operation should iterate over the tensor dimensions. Index

expression is the main mean for users to express tensor operations and to assign

results of an operation to a tensor.

ScalarAccess objects are created by calling operator() with integer coordi-

nates as input. They can perform reads and writes to that specific coordinate

of the tensor, as an alternative to using the insert and at methods.

Access objects are not intended as an object which users consciously create and

assign to a variable, but rather as temporary containers to make tensor indexing

syntax possible. As such, their functionality largely relies on method overloading, so
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the user should never require to explicitly call any methods on access objects. The

right side of figure 4-2 shows how ScalarAccess objects can be used to interact with

tensor values in lines 12-17 and 23-24. Line 20 provides an example of index notation

constructed using Access objects.

4.1.4 Compiler Methods

Compiler methods play a central role in the taco library, as they create code to execute

operations previously stated by the user, such as value insertions, and most notably

tensor expression computation.

Pack consolidates all values inserted to a tensor into the specified storage data

structure. Operands must be packed before they can be used for operation

execution.

Compile Executes taco’s code generation algorithm to generate code to as-

semble the result of, and compute any tensor expression declared via index

notation.

Assemble assembles the index structure of the output tensor and allocates

memory for it.

Compute Executes the code to compute the declared tensor expression, which

was previously generated during the compilation step.

The proposed API does not require users to explicitly call compiler methods, and

instead makes them optional. Compiler methods can, however, be called to assert

control over the flow of program computations, for example to time the compilation,

computation, or both. If they are not explicitly called by the user, they are instead

called behind the scenes by the lazy execution framework described in chapter 5.
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4.2 Block Tensor Formats

Tensor formats describe the data structure used to store the components of a tensor.

In taco the Format class serves as an abstraction to conceptually separate the layout

used to store tensor data from the operations performed on the tensor.

The result of any tensor expression is fully determined by its index notation and

the values stored in the input tensors. The formats of the input and output tensors on

the other hand change the specifics about how the generated code accesses each tensor.

Using different tensor formats will therefore have a big role in the performance of the

operation, but does not change high-level behavior nor correctness of the generated

code.

Block matrices and tensors can be expressed in taco with the use of higher order

tensors. Consider the block compressed sparse row format (BCSR), which can be rep-

resented as a 4th-order tensor [15] (a blocked matrix with two inner dense dimensions

storing small dense blocks of non-zeros,) as shown in line 5 of figure 4-4. The new

API makes this approach for defining blocked tensors explicit by introducing block

tensor formats. Blocks allow formats to represent each tensor dimension as multiple

tensor modes, creating tensors with multiple block levels (each mode of a dimension

belongs to a different block level.) For each dimension, all but one of the modes must

have a fixed size, where the size of the last mode is determined during tensor creation

by the overall size of the dimension. Blocked formats support block tensors of any

number of dimensions and any number of block levels.

Block formats let users reason about tensors as if they had lower dimensionality.

For instance, with block formats users can write taco code to perform linear algebra

and execute it with block matrices as input to their operations. Furthermore, block

formats let users change between tensor and block tensor formats without having to

add indices to index expressions throughout their code, which would be otherwise

necessary to operate on tensors with higher dimensionality.

For example, a BCSR matrix is composed of two block levels: an outer dense sparse

layer of free size modes, and an dense fixed size inner block. A BCSR format defined
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in taco as a block format behaves for all intents and purposes as a 2-dimensional

tensor, even when its underlying data structure is that of a 4-tensor. In figure 4-4 we

compare the definition of a 4th-order tensor format representing BCSR (line 5) to a

blocked BCSR matrix format with blocks of fixed size 16× 16 (line 8).

1 // 2-tensor block vector format
2 Format bsv({Dense ,Compressed });
3 Tensor <double > a({8,4}, bsv);
4 Tensor <double > c({8,4}, bsv);
5
6 // 4-tensor BCSR format
7 Format bcsr(
8 {Dense ,Compressed ,
9 Dense ,Dense });

10 Tensor <double > B({8,8,4,4}, bcsr);
11
12 // Insert Values using 4 indices
13 B(0,0,0,0) = 1.0;
14 B(1,2,0,1) = 2.0;
15 B(1,2,1,3) = 3.0;
16
17 c(0,2) = 3.0;
18 c(2,3) = 6.0;
19
20 // Define operation using 4 indexVars
21 IndexVar i1 , i2 , j1 , j2;
22 A(i1,i2) = B(i1,j1 ,i2,j2) * c(j1,j2);

1 // block vector format
2 Format bsv({{ Dense},{ Compressed (4)}});
3 Tensor <double > a({32}, bsv);
4 Tensor <double > c({32}, bsv);
5
6 // block BCSR format with fixed size blocks
7 Format bcsr(
8 {{Dense ,Compressed},
9 {Dense(4),Dense (4)}});

10 Tensor <double > B({32 ,32}, bcsr);
11
12 // Insert Values using 4 indices
13 B(0,0) = 1.0;
14 B(8,17) = 2.0;
15 B(9,19) = 3.0;
16
17 c(2) = 3.0;
18 c(19) = 6.0;
19
20 // Define operation using 4 indexVars
21 IndexVar i, j;
22 A(i) = B(i, j) * c(j);

Figure 4-4: Comparison of using a 4-tensor format (left) and a block format (right)
to represent BCSR. Both yield identical functionality.

4.3 Tensor Index Notation

The new API extends taco’s index notation language to support tensor transpose

operations and tensor slices.

4.3.1 Tensor Transpose Notation

The code generated by taco requires tensor expressions to iterate over tensor levels

in the same order in which the tensor format presents them. Therefore, taco cannot

currently generate code to perform tensor transposition. It does however provide a

tensor transposition routine. The new API leverages the transposition routine to

enable transpose notation at the index notation level.
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1 Format csr({Dense ,Compressed });
2 Tensor <double > A({10 ,16}, csr);
3 Tensor <double > B({16 ,10}, csr);
4 Tensor <double > C({10 ,16}, csr);
5

6 B(0,0) = 7.0;
7 B(12,4) = 3.0;
8 B(2,9) = 13.0;
9 C(4,12) = 5.0;

10

11 // transpose index notation
12 IndexVar i, j;
13 A(i,j) = B(j,i)
14

15 A(i,j) = B(j,i) + C(i,j)

Figure 4-5: Tensor transposition index notation.

Tensor transposition is performed as a preprocessing step to tensor code genera-

tion. Before compiling tensor expression, the result Tensor object checks if the indices

of all the tensors involved in the operation have the proper ordering to perform the

operation. If this is not the case, the transposes of all tensors which have an incorrect

ordering are computed and stored in temporary tensor objects. These temporary

tensor objects are used for code generation and computation instead of the original

ones, and discarded once the operation is complete.

4.3.2 Tensor Slice Notation

The new API also introduces tensor slicing notation as part of taco’s index notation.

Tensor slices restrict the iteration range of a tensor during a computation, so they

can be used to reduce the range of values accessed for a given dimension, or reduce

the dimensionality of a tensor altogether. Slicing performs two transformations to

dimension iteration. First, it restricts the tensor data being accessed during the

iteration by effectively dropping all data outside the slice range from the computation.

Second, it shifts the index space of the tensors in the operation to align new iteration

ranges.

For example, tensor slices allow the user to perform vector addition of a size 16

vector with the first 16 coordinates of a size 100 vector (figure 4-6). As another

example, tensor slices allow us to slice out a matrix from within a 3-tensor, and store
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it as a new tensor (figure 4-7).

1 a(i) = b(i) + c(i(0 ,16));

Figure 4-6: Vector addition slice index notation.

1 A(i,j) = B(k(5), i, j);

Figure 4-7: Matrix slice of 3-tensor slice index notation.

Tensor slice notation extends index notation by letting the user specify a restricted

iteration range to each dimension of each tensor. For example, in figure 4-6, we restrict

dimension i of c to range from indices 0 to 16. In figure 4-7 on the other hand, we

restrict dimension k of B to the single index 5.

Tensor slices are declared per dimension using range index variables, a variation of

index variables which contains metadata specifying the index iteration range. When

indexing a tensor with index variables, the user can use the variable’s operator()

to specify the beginning and end bounds of the desired range. Users can also specify

a range stride, so for example, it is possible to iterate over every other value in a

given dimension range. Finally, it is possible to specify a range shift, which lets users

take the values in a index range, and offset their location within the tensor. Iteration

ranges for each tensor can be defined independently.

If a shift is not specified, the corresponding tensor dimension size is reduced

to match the size of the range. In this case, range index variables for the same

dimension in an expression are required to have the same iteration size. This allows

their iteration indices to be aligned one to one, pairing the first index of each iteration

range, then the second, and the third, and so forth. Therefore, pairing iteration ranges

to each other is never ambiguous. On the other hand, when a shift is defined, then

the size of the corresponding dimension is not modified. Instead, the operation drops

all tensor values outside of the specified range, but the tensor shape does not change.

The shift modifies the location of the index range within the tensor dimension. In
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figure 4-8, we can see an example of how shift can be used to selectively remove

values in a tensor.

1 Tensor <double > a({6}, {Compressed });
2 Tensor <double > b({6}, {Dense });
3

4 // b = [1, 7, 4, 3, 1, 8]
5 b.setFromComponents(b_vals );
6

7 a(i) = b(i(\* start*\ 2, \*end*\ 5, \* stride *\ 1, \* shift*\ -1));
8

9 // a = [0, 4, 3, 1, 0, 0]
10 a.compute ();
11

12 // Shift of 0 is also allowed to perform value masking.
13 a(i) = b(i(\* start*\ 2, \*end*\ 5, \* stride *\ 1, \* shift*\ 0));
14

15 // a = [0, 0, 4, 3, 1, 0]
16 a.compute ();

Figure 4-8: Vector masking using a tensor slice shift.

It is important to notice that slice notation is independent of tensor formats. The

specified ranges refer to the theoretical values stored within the specified ranges of

each tensor, regardless of how many values are actually stored within the ranges.

Figure 4-9 shows more examples of slice index notation. As illustrated in the

figure, the size of the range assigned to each index variable is constant throughout

each tensor operation. For example, in the expression from line 14, dimension i in

matrix A only has 6 elements, and the corresponding dimension in B is restricted to a

value interval of size 6. Similarly, dimension i in matrix A only has 5 elements, and

the corresponding dimension in B is also restricted to a size 5 range, but this time the

range starts at index 3 (so index 0 of A corresponds to 3 of B, 1 to 4, and so forth.)

In line 16 we can see examples of ranges with stride 2 and 3, so in the case of the

dimension with index variable i, index 0 of A corresponds to 0 of B, and then index

1 A corresponds to 2 of B instead of 1, and so forth.

The taco code generation machinery currently does not support the required func-

tionality to implement index range iteration. Therefore, tensor operations expressed

with tensor slice notation cannot yet be computed. In Chapter 6 we introduce a code

generation extension to taco that will enable this behavior.
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1 Format csr({Dense ,Compressed });
2 Format dv ({Dense ,Compressed });
3 Tensor <double > A({6,5}, csr);
4 Tensor <double > B({15 ,10}, csr);
5 Tensor <double > C({16 ,16}, csr);
6

7 B(0,0) = 7.0;
8 B(12,4) = 3.0;
9 B(2,9) = 13.0;

10 c(12,4) = 5.0;
11

12 // slice index notation
13 IndexVar i, j, k;
14 A(i,j) = B(i(0,6),j(3,8))
15

16 A(i,j) = B(i(0,12,2),k) * C(k(0,10),j(1,16,3))

Figure 4-9: Tensor slice index notation examples.

4.4 Linear Algebra API

In the new API we also introduce a taco linear algebra API that enables linear algebra

notation in taco. The API allows users to write tensor expressions involving matrices

and vectors using linear algebra conventions instead of tensor index notation. For

example, instead of writing matrix-vector multiplication in index notation as a(i) =

B(i,j) * c(j) users can write a = B * c.

The linear algebra API defines a Matrix class and the Vector class, both of

which inherit from the Tensor class with their order set to 2 and 1 respectively. The

Matrix and Vector classes overload their algebraic operators (addition, subtraction,

multiplication, etc.) to enable linear algebra notation. The operations supported by

the API are however limited to the subset of linear algebra supported by taco, namely

any operations between matrices and vectors. Other linear algebra computations

such as eigenvalues, linear solvers, determinants, and matrix factorizations are not

supported. Figure 4-10 shows some examples of linear algebra expressions, and their

equivalent tensor algebra expressions
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1 // Instantiate CSR matrices
2 Format csr({Dense ,Compressed });
3 Tensor <double > A({10 ,10}, csr);
4 Tensor <double > B({10 ,10}, csr);
5 Tensor <double > C({10 ,10}, csr);
6
7 // Instantiate dense vectors
8 Format dv({Dense });
9 Tensor <double > a({10}, dv);

10 Tensor <double > b({10}, dv);
11 Tensor <double > c({10}, dv);
12
13 IndexVar i, j, k;
14
15 // Vector subtraction
16 a(i) = b(i) - c(i);
17
18 // Element -wise vector product
19 a(i) = b(i) * c(i);
20
21 // Vector dot product
22 double x = b(i) * c(i);
23
24 // Matrix addition
25 A(i,j) = B(i,j) + C(i,j);
26
27 // Matrix multiplication
28 A(i,j) = B(i,k) * C(k,j);
29
30 // Element -wise matrix multiplication
31 A(i,j) = B(i,j) * C(i,j);
32
33 // Matrix vector multiplication
34 a(i) = B(i,j) * c(j);

1 // Instantiate CSR matrices
2 Format csr({Dense ,Compressed });
3 Matrix <double > A({10 ,10}, csr);
4 Matrix <double > B({10 ,10}, csr);
5 Matrix <double > C({10 ,10}, csr);
6
7 // Instantiate dense vectors
8 Format dv({Dense });
9 Vector <double > a({10}, dv);

10 Vector <double > b({10}, dv);
11 Vector <double > c({10}, dv);
12
13 IndexVar i, j, k;
14
15 // Vector subtraction
16 a = b - c;
17
18 // element -wise vector product
19 a = b % c;
20
21 // vector dot product
22 double x = b * c;
23
24 // Matrix addition
25 A = B + C;
26
27 // Matrix multiplication
28 A = B * C;
29
30 // Element -wise matrix multiplication
31 A = B % C;
32
33 // Matrix vector multiplication
34 a = B * c;

Figure 4-10: Example linear algebra API operations (right) and their equivalent index
expressions (right).

4.5 Compatibility with Eigen

Taco supports a large variety of tensor algebra operations between tensors of any

order, and a large number of tensor formats. However, taco does not support other

kinds of tensor and linear operations, including linear and eigenvalue solvers, geomet-

ric transformations, and LU and Cholesky decompositions, to name a few. Neverthe-

less, there exist many other tensor and linear algebra libraries that do implement the

functionality that taco lacks. It is therefore important to let users make use of the

combined functionality provided by the different libraries available.

The new API has a module that allows compability with Eigen [10], a popular

C++ linear algebra library that supports a large variety of performant linear algebra

operations. This Eigen module lets users convert back and forth between taco tensor
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objects and Eigen matrix and vector objects for all formats supported by Eigen.

With this package users can perform major tensor algebra operations in taco, while

delegating other linear algebra routines to Eigen.
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Chapter 5

Lazy Execution Framework

In the new API it is not necessary for users to call tensor compiler methods. Instead,

compiler methods are automatically called when required. These method calls are

hidden behind the tensor abstraction, lazily executed by the tensor lazy execution

framework described in this section. Users can, however, still explicitly call these

methods to force a compilation or execution step to happen, but are not required to

do so.

In the old taco API compiler methods must be called explicitly to perform most

tensor operations. When values are inserted to a tensor, the tensor must be packed

after the last value insertion and before the tensor is used as input to compute a

tensor expression. Similarly, after a tensor expression is defined, it must be compiled,

assembled, and computed before accessing the values of the resulting tensor. Compiler

methods can be called at any point within these time frames, so users have fine-grained

control over when tensor operation execution happens. For example, users can use

this framework to to avoid unnecessary computations or to time the execution of an

operation. However, the necessity of compiler methods also leads to increased code

size and code complexity. Furthermore, in many scenarios compiler methods cannot

be leveraged to improve performance, so they become boilerplate code accompanying

every declared operation.

The lazy execution framework instead executes compiler methods automatically

when needed (At the last possible moment that preserves correctness.) For example,
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when an operation is declared on some tensor 𝐴 the operation is compiled and ex-

ecuted when the user attempts to access values stored in 𝐴, either through a read

method, or during the computation of a different expression. Compiler method exe-

cution is then indirectly determined by the operations the user decides to perform.

There are two situations where a tensor requires compiler method execution. The

first is when values are inserted into a tensor and have not been packed. In this

scenario, pack must be called before using the tensor to perform other actions. The

second situation is when a tensor index expression is assigned to a tensor. Then the

expression must be compiled, assembled and computed before the user can access any

resulting tensor values. A tensor can therefore conceptually be in one of the following

three states:

Do pack: values have been inserted into the tensor, but they have not been

compiled into their target data structure.

Do compute: the tensor has been assigned a tensor operation, but it has not

been computed.

Ready for access: the tensor does not require the execution of any other

compiler methods.

The do compute state is further subdivided to keep track of independent executions

of compile, assemble and compute. This subdivision allows users to explicitly execute

any compiler method if needed.

Transition between tensor states is determined through method calls issued by the

user such as read/write methods, tensor expression assignment, etc. We can group

user actions into the following events:

Tensor Creation: When a tensor is created, it does not have data or an

allocated data structure. New tensors start in the do pack state, indicating

that they need a data structure to be part of an operation (even if they have

no values.)
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Tensor Modification: Users can perform tensor modifications via write meth-

ods (such as insert.) Writing to a Tensor will transition the tensor into the

do pack. If the modified tensor 𝑇 was previously in the do compute state, the

modification triggers 𝑇 to compute its expression, since modifications cannot

be performed on tensors that have not yet been computed. On the other hand,

if 𝑇 is needed as an input for the computation of a different tensor 𝑇 ′, the

modification to 𝑇 triggers 𝑇 ′ to compute itself, since the computation must

happen before its inputs are modified to preserve correctness. Finally, if 𝑇 was

already in the do pack state, the new modification is simply added to the set of

modifications that will occur during the next call to pack.

Tensor Read: When the user calls a read method to access the values in a

tensor 𝑇 , the values in 𝑇 must be updated before they are returned to the user.

If 𝑇 is in the do pack state, a call to pack is triggered before the read method

is executed. Similarly, of 𝑇 is in do compute, 𝑇 ’s tensor expression is compiled,

assembled and computed before data access.

Expression Assignment: When a index expression (such as T(i,j) = B(i,j)

+ C(i,j)) is declared, the expression is assigned to the result tensor (T), tran-

sitioning T to do compute. If T was previously in the do pack or do compute

states then the unfinished the modifications/operations are discarded, since the

new assignment replaces them. However, if the values of T are needed for the

computation of a different tensor 𝑇 ′ at the time of the assignment, 𝑇 ′ must be

computed before T replaces its previous values. In this case, the assignment

triggers 𝑇 ′ to compute itself, which in turn triggers 𝑇 to update its current

values. If 𝑇 is in do pack or do compute when this happens, 𝑇 first updates

itself (via pack or compute), then 𝑇 ′ computes itself, and finally the new ex-

pression is assigned to 𝑇 . At this point, the tensor values in the operands are

not yet required, so operands remain in their current state. However, the new

dependency between all tensors in the expression must be recorded, so tensors

can later comunicate with each other to coordinate computations.
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Compiler Method Call: Users can also explicitly call compiler methods.

Calling compile, assemble, and compute will transition a tensor from do com-

pute to ready for access. The user can perform just compile, or compile

and assemble, and the lazy execution framework will execute the rest of the

methods automatically when needed. However, the methods must be called in

order, so users cannot call only compute or assemble.

Calling pack will transition a tensor from do pack to ready for access.

Tensor Deletion: When an expression is declared, the result tensor stores a

smart pointer reference to the contents of all the expression operands. Therefore,

if an operand 𝑇 is deleted (either by the user, or when it goes out of scope),

result tensors that depend on 𝑇 will still have access to its contents for as

long as they need it. Therefore, deleting a tensor does not affect other tensor

computations.

Figure 5-1 illustrates tensor state transitions via a state diagram.

Figure 5-1: Tensor State Diagram.

When a tensor expression is defined, it introduces a two way dependency between

the result tensor and each operand tensor. When the result tensor computes itself,
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it first must communicate to its operands that they are about to be accessed, and

trigger them to update their values On the other hand, when an operand is about to

be modified, it must trigger any result tensors that depend in it to compute themselves

before the update proceeds. Tensors keep track of this dependencies with a double

observer pattern:

A Result tensor observes its operands, waiting for a notification indicating it

should be computed (which happens when an operand is modified.)

An Operand tensor observes the result tensors for all the operations it is an

operand of, waiting for a notification indicating it should be computed (which

happens when the result wants to compute its values.)

Notice that when a tensor expression is declared, its declaration does not trigger

any computations. Therefore, an operand in one expression can also be the result

in another that has not been computed, so the tensor is simultaneously observing a

result tensor and its operands. Nevertheless, it is impossible for a tensor to depend

on itself via a chain of computations: if a tensor A depends on tensor B (directly or

indirectly), and then A is assigned an expression which operates on B, the assignment

would trigger A to notify to all its dependents that it is about to be modified by the

assignment. So before the assignment happens A will remove any dependencies on

itself, including its previous dependency with B.

The double observer pattern is used to coordinate the correct resolution of com-

putation dependencies. Tensors can receive different messages from other tensors:

Add to dependents: When a tensor expression is declared, the result tensor

sends a message to its operands to add it to their list of dependent tensors.

Each operand tensor keeps track of all the tensors which depend on it as its

observers.

Notice that when a tensor expression expression is declared, the result tensor is

informed of all its operands, so the operands do not send any add to dependents

messages to the result. The Assignment itself is used by the result to keep track

of, and message the result’s operands.
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Remove from dependents: When a tensor expression has been completed,

the result tensor no longer depends on its operands, so it sends out a remove

from dependents message. The operands then remove the result tensor from

their list of dependents. This is done to prevent the operands from triggering

future unrelated operations in the result.

Update: Both result and operand objects can send a update message to each

other to trigger computation or packing. When an operand is about to be

modified, it triggers all of its dependents to update in order to remove the

existing dependencies and proceed with the modification. On the other hand,

when a result tensor needs to be updated, it first triggers all its operands to

compute so the result can correctly complete its computation.

When a tensor expression is assigned, the result tensor creates strong references

to its operands to keep them alive, since they are required for the computation. As

soon as the computation occurs, the references are removed. Operands instead hold

weak references to their dependents, to avoid circular references and memory leaks.

We use the computation from figure 5-2 to run through an example of how the

tensor state machine and the double observer pattern are used to achieve lazy execu-

tion. First, tensors A, B, and C are created, starting in the do pack state (1). Then,

values are inserted to tensors B and C, so they stay in the do pack state (2). At (3),

a tensor expression is defined. Through the expression, B and C are subscribed to A

as operand observers. Then, A sends an add to dependents message to both B and

C, becoming their observer as well. The assignment concludes and A transitions to

the do compute state. At (4), A is accessed via a print statement. To compute itself,

A first sends a compute message to both B and C. The message triggers B and C to

call pack. Then, A compiles, assembles, and computes its expression, and sends a

remove from dependents message to B and C. All tensors are now in the ready for

access state. Finally, A performs the print operation and the program terminates.

We provide a dependency diagram (figure 5-3) and a sequence diagram (figure 5-4)

to further illustrate the example. Appendix B contains a more involved example of
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the lazy execution framework.

1 // (1)
2 Format csr({Dense ,Compressed });
3 Tensor <double > A({10 ,10}, csr);
4 Tensor <double > B({10 ,10}, csr);
5 Tensor <double > C({10 ,10}, csr);
6

7 // (2)
8 B.setFromComponents(b_vals );
9 C.setFromComponents(c_vals );

10

11 // (3)
12 IndexVar i, j, k;
13 A(i,j) = B(i,k) * C(k,j);
14

15 // (4)
16 std::cout << A << std::endl;

Figure 5-2: Example matrix multiplication computation.

Figure 5-3: Tensor dependency diagram for the computation in figure 5-2. Black
arrows indicate tensor and operation dependencies. Red dashed arrows indicate com-
putation triggers.
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Figure 5-4: Tensor sequence diagram for the computation in figure 5-2.

44



Chapter 6

Code Generation

Each tensor format in taco defines a unique data structure to store the values it

contains. Therefore, the implementation of methods to access and interact with

tensors and tensor data is directly related to the format of the tensors. For example,

a routine to access the value stored at a particular coordinate will be faster for a

dense tensor compared to that of a tensor stored in the coordinate format (COO).

Given the number of possible tensor formats, it is infeasible to write code to access

each individual format to perform a tensor operation. A code generation approach is

therefore needed to access different format data structures.

In this chapter we describe how taco’s code generation capabilities can be used to

generate code that executes tensor methods such as component access and insertion

for any of the formats supported by the library. We then propose two new features

to extend taco’s code generation capabilities, and describe how they can be used to

implement different interface methods and functionality.

6.1 Framing Methods as Tensor Operations

It is possible to frame many tensor read and write methods as tensor operations.

For example, tensor packing from COO to compressed sparse fiber format (CSF) can

be expressed in index notation with a simple tensor assignment operation A(i,j) =

B(i,j). To further illustrate this concept, we consider performing value insertion to
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a tensor coordinate using the += operator.

1 ...
2 Tensor <double > A({3,3}, format );
3
4 A.setFromComponents(a_vals );
5 std::cout << A << std::endl;
6
7 A(0,2) += 5.0;
8 A(1,0) += 3.0;
9 A(1,2) += 2.0;

10 std::cout << A << std::endl;

1 Output log:
2
3 > 1.0, 3.0, 0.0
4 0.0, 2.0, 7.0
5 0.0, 0.0, 1.0
6
7 > 1.0, 3.0, 5.0
8 3.0, 2.0, 9,0
9 0.0, 0.0, 1.0

Figure 6-1: taco routine for value insertion (left) and its output log (right).

Figure 6-1 shows taco syntax for inserting 5.0 to coordinate location (0,2) of

tensor A. A routine to perform the presented component insertion typically involves

first finding the in-memory location of coordinate (0,2) of tensor A, and then replac-

ing the 0.0 currently stored at that location with 5.0. The implementation of such

routine requires knowledge of the format used to store tensor A in memory, since the

location of A(0,2) is not the same if A is column major matrix or if it is a row major

one.

The value insertion problem can instead be framed as a tensor addition operation.

Inserting 5.0 to location (0,2) of A is equivalent to performing tensor addition of A

and T, where T is a temporary tensor which contains only the value 5.0 at position

(0,2). Multiple value insertion assignments can be performed simultaneously by

compiling the inserted values into T before performing the tensor addition. Figure 6-2

illustrates how the new values from figure 6-1 are inserted into A in a single operation

𝐴 = 𝐴′ + 𝑇 =

⎛⎜⎝ 1 3 0
0 2 7
0 0 1

⎞⎟⎠+

⎛⎜⎝ 0 0 5
3 0 2
0 0 0

⎞⎟⎠ =

⎛⎜⎝ 1 3 5
3 2 9
0 0 1

⎞⎟⎠
Figure 6-2: tensor component insertion framed as tensor addition.

Since taco is capable of generating code to perform tensor addition between tensors

of arbitrary format, tensor T can be expressed in any format independently of the

format A is stored in. For example, using the COO format to store T ensures that T

has always constant size, regardless of its dimensionality.
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In the old API, if a value is inserted into A, and then A is used in a tensor expression,

A must be materialized into a single data structure before it can be used for the

computation. If A is sparse, packing new values into A requires creating and allocating

memory for a whole new data structure to hold all of A’s values. Inserting a few values

into A before a computation can therefore introduce large overhead: it takes just as

much time to iterate over the values of A to perform a single value insertion as it does

to iterate over A to perform any other operation. Using A’ + T instead of A also lets

us remove the materialization overhead altogether. If only a small number of values

are inserted into A, when A is used in a tensor expression, we can replace A with A’

+ T behind the scenes for code compilation and computation. Figure 6-3 shows how

such a substitution would look like in index notation.

𝐵(𝑖, 𝑗) = 𝐴(𝑖, 𝑘) * 𝐶(𝑘, 𝑗)

→

𝐵(𝑖, 𝑗) = (𝐴′(𝑖, 𝑘) + 𝑇 (𝑖, 𝑘)) * 𝐶(𝑘, 𝑗)

Figure 6-3: Substituting A for A’ + T to perform matrix multiplication.

This approach can be generalized to implement different tensor interface methods.

For instance, general value insertion can be performed using the same approach with

a replace routine, where values in tensor A are replaced by non-zeros in tensor T

(instead of added together.) We describe how to extend the taco code generation

algorithm to support such replace operation in section 6.3.

6.2 Code Generation Background

In this section, we give a brief description of the code generation technique introduced

by Kjolstad et al. [15] to emit efficient code to compute any compound tensor algebra

expression.

The code generation technique takes as input a tensor algebra expression in ten-

sor index notation, which describes how each component in the output of a tensor

computation can be computed in terms of components in the operands. Computing
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a tensor algebra expression in this form requires iterating over the merged iteration

space of the operands dimension by dimension. For instance, efficient code that adds

two sparse matrices must logically iterate only rows that have non-zeros in either

matrix and, for each row, iterate only the columns that are non-zero in either matrix.

How exactly tensor dimensions should be merged depends on the computation.

First, the algorithm determines the proper order in which to iterate over dimen-

sions based on the order of index variables in the index expression as well as the order

in which dimensions of the accessed tensor are stored. The algorithm then recursively

generates code for each index variable in the input index expression. For each dimen-

sion 𝑖 the algorithm determines the loops needed to simultaneously iterate over all

tensors that contain dimension 𝑖. Multiplication requires iterating over the intersec-

tion of the operands as the result is non-zero only if both operands are non-zero. On

the other hand, addition requires iterating over the union of the operands as the result

is non-zero if at least one of the operands is non-zero. The algorithm generates loops

for any arbitrary combination of intersection and union merges to effectively perform

the specified tensor operation. Finally, at each loop level the algorithm emits code

to compute values as necessary to calculate the tensor operation. Figure 6-4 shows

examples of code generated by taco to perform a tensor multiplication.

1 // A(i,j) = B(i,k) * C(k,j)
2 // B and C have a csr format
3 for (int32_t iB = 0; iB < B1_dimension; iB++) {
4 for (int32_t pB2 = B2_pos[iB]; pB2 < B2_pos [(iB + 1)]; pB2++) {
5 int32_t kB = B2_crd[pB2];
6 double tk = B_vals[pB2];
7 for (int32_t pC2 = C2_pos[kB]; pC2 < C2_pos [(kB + 1)]; pC2++) {
8 int32_t jC = C2_crd[pC2];
9 int32_t pA2 = iB * A2_dimension + jC;

10 A_vals[pA2] = A_vals[pA2] + tk * C_vals[pC2];
11 }
12 }
13 }

Figure 6-4: Code generated by taco to perform CSR matrix multiplication.
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6.3 The Replace Tensor Operation

In section 6.1 we describe how to perform value insertions declared with the += op-

erator using tensor addition. In order to generate code to perform general value

insertion, we propose to extend taco with a new tensor operation: replace.

Replace is a binary tensor operation which takes as input two tensors A and B. A

(replace) B is computed by taking A, and replacing values in A with values in B for

each non-zero component in B. In figure 6-5 we show an example of how replace is

computed.

𝐴(𝑟𝑒𝑝𝑙𝑎𝑐𝑒)𝐵 =

⎛⎜⎝ 1 3 0
0 2 7
0 0 1

⎞⎟⎠ (𝑟𝑒𝑝𝑙𝑎𝑐𝑒)

⎛⎜⎝ 0 0 5
0 0 0
0 0 0

⎞⎟⎠ =

⎛⎜⎝ 1 3 5
0 2 7
0 0 1

⎞⎟⎠
Figure 6-5: Tensor replace operation example.

Computing A (replace) B requires iterating over the disjunction of the dimen-

sions of A and B, since for each coordinate, only one term needs to be non-zero for

the result to be non-zero. This corresponds to the union of the iteration spaces of

each merged dimension, so the iteration loops needed to compute replace are then

the same as those emitted to compute addition. Therefore, extending taco to sup-

port replace requires minimal changes to the code generation algorithm. Figures 6-6

and 6-7 compare taco code generated for tensor addition and for the new tensor

replace operation.

1 // A(i,j) = B(i,j) + C(i,j)
2 for (int32_t iB = 0;
3 iB < B1_dimension; iB++) {
4 for (int32_t jB = 0;
5 jB < B2_dimension; jB++) {
6 int32_t pB2 = iB * B2_dimension + jB;
7 int32_t pC2 = iB * C2_dimension + jB;
8 int32_t pA2 = iB * A2_dimension + jB;
9 A_vals[pA2] = B_vals[pB2] + C_vals[pC2];

10 }
11 }

1 // A(i,j) = B(i,j) (replace) C(i,j)
2 for (int32_t iB = 0;
3 iB < B1_dimension; iB++) {
4 for (int32_t jB = 0;
5 jB < B2_dimension; jB++) {
6 int32_t pB2 = iB * B2_dimension + jB;
7 int32_t pC2 = iB * C2_dimension + jB;
8 int32_t pA2 = iB * A2_dimension + jB;
9 A_vals[pA2] = B_vals[pB2];

10 if (C_vals[pC2] != 0) {
11 A_vals[pA2] = C_vals[pC2];
12 }
13 }
14 }

Figure 6-6: Comparison between code to compute tensor addition and tensor replace-
ment with dense matrices.
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1 // A(i,j) = B(i,j) + C(i,j)
2 for (int32_t iB = 0;
3 iB < B1_dimension; iB++) {
4 int32_t pC2 = C2_pos[iB];
5 int32_t C2_end = C2_pos [(iB + 1)];
6 int32_t jB = 0;
7 int32_t B2_end = B2_dimension;
8 while (pC2 < C2_end) {
9 int32_t jC = C2_crd[pC2];

10 int32_t pB2 = iB * B2_dimension + jB;
11 int32_t pA2 = iB * A2_dimension + jB;
12 if (jC == jB) {
13 // Value addition
14 A_vals[pA2] = B_vals[pB2] + C_vals[pC2];
15 }
16 else {
17 A_vals[pA2] = B_vals[pB2];
18 }
19 pC2 += (int32_t )(jC == jB);
20 jB++;
21 }
22 while (jB < B2_end) {
23 int32_t pB2 = iB * B2_dimension + jB;
24 int32_t pA2 = iB * A2_dimension + jB;
25 A_vals[pA2] = B_vals[pB2];
26 jB++;
27 }
28 }

1 // A(i,j) = B(i,j) (replace) C(i,j)
2 for (int32_t iB = 0;
3 iB < B1_dimension; iB++) {
4 int32_t pC2 = C2_pos[iB];
5 int32_t C2_end = C2_pos [(iB + 1)];
6 int32_t jB = 0;
7 int32_t B2_end = B2_dimension;
8 while (pC2 < C2_end) {
9 int32_t jC = C2_crd[pC2];

10 int32_t pB2 = iB * B2_dimension + jB;
11 int32_t pA2 = iB * A2_dimension + jB;
12 if (jC == jB) {
13 // Value replacement
14 A_vals[pA2] = C_vals[pC2];
15 }
16 else {
17 A_vals[pA2] = B_vals[pB2];
18 }
19 pC2 += (int32_t )(jC == jB);
20 jB++;
21 }
22 while (jB < B2_end) {
23 int32_t pB2 = iB * B2_dimension + jB;
24 int32_t pA2 = iB * A2_dimension + jB;
25 A_vals[pA2] = B_vals[pB2];
26 jB++;
27 }
28 }

Figure 6-7: Comparison between code to compute tensor addition and tensor replace-
ment with CSR matrix C.

Tensor Component Insertion. We introduce replace into taco to support code

generation for general value insertion without packing. We extend the approach

shown in section 6.1 to value insertion by replacement, in addition to the shown value

insertion by addition.

To implement tensor insertion, the Tensor object first compiles inserted values

to a temporary buffer in COO format. To materialize A we then compute A =

A’(replace)T, where A’ contains A’s original stored values. This process replaces

the old API’s hand-implemented pack routine. When the old pack is called, it re-

places the current values of A with the new inserted values. On the other hand, the

new approach retains both the current values of A and the new inserted values. In

addition, the new approach automatically supports new tensor formats as soon as

they are supported by the code generation algorithm.

As described in section 6.1, we can also remove the tensor materialization overhead

by using A’+T instead of A during tensor expression computation, as shown in figure 6-

8. With this approach it is no longer required to call pack before tensor computation

(implicitly or explicitly.)
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1 Format csr({Dense ,Compressed });
2 Tensor <double > A({10 ,10}, csr);
3 Tensor <double > B({10 ,10}, csr);
4 Tensor <double > C({10 ,10}, csr);
5

6 ...
7

8 // Values inserted to temporary buffer T
9 A(0,0) = 4.0;

10 A(2,4) = 1.0;
11 A(7,6) = 4.0;
12 A(9,9) = 4.0;
13

14 // At this point , A is represented as
15 // A(i,j) = A’(i,j) (replace) T(i,j)
16

17 ...
18

19 IndexVar i, j;
20 B(i,j) = A(i,j) + C(i,j);
21

22 // We internally substitute A for A’ + T during computation:
23 // B(i,j) = (A’(i,j) (replace) T(i,j)) + C(i,j)
24 std::cout << B << std::newl;

Figure 6-8: Example of substituting pack with replace.

6.4 Ranged dimension iteration

The goal of ranged dimension iteration is to allow iteration over a subset of each

dimension’s iteration space. Ranged dimension iteration lets the user iterate over a

specific numerical range of a dimension, defined by its start and end bounds, as well

as an optional positive stride. We extend taco with ranged dimension iteration to

support operations with the slice index notation introduced in section 4.3.2.

To generate code for ranged dimension iteration, we introduce a transformation

over the iteration loops emitted by the code generation algorithm. For each dimen-

sion, we introduce an abstract iteration index which represents the index of iteration

over the specified range (in addition to the concrete index which keeps track of the

iteration over the complete tensor dimension.) The abstract index is used to adjust

all concrete indices to their respective iteration range. The adjustments to index

variables differ depending on the format of each dimension. To illustrate this, we

demonstrate generated code for iterating over a CSR matrix in the right side of fig-

ure 6-9. Dimension 𝑖 is dense, so we iterate directly using the abstract index range_i.
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We then compute the real indices iA and iB corresponding to range_i for matrices A

and B, respectively. Dimension 𝑗 is compressed, so we cannot directly iterate over the

abstract index range_j. Instead, we iterate over the compressed dimension of B, and

infer range_j from jB. Generating code for ranged iteration affects only the syntax

of each loop, while the overall structure of the iteration, as well as the code emitted

to perform the requested operation remain unchanged.

1 // A(i,j) = B(i,j)
2 for (int32_t iB = 0;
3 iB < B1_dimension;
4 iB++) {
5
6
7 for (int32_t pB2 = B2_pos[iB];
8 pB2 < B2_pos [(iB + 1)];
9 pB2 ++) {

10 int32_t jB = B2_crd[pB2];
11
12
13
14
15
16
17
18
19 int32_t pA2 =
20 iB * A2_dimension + jB;
21 A_vals[pA2] = B_vals[pB2];
22 }
23 }

1 // A(i,j) = B(i(2,12,2),j(10 ,20))
2 for (int32_t range_i = 0;
3 range_i < 5;
4 range_i ++) {
5 int32_t iA = ir;
6 int32_t iB = 2 * range_i + 2;
7 for (int32_t pB2 = B2_pos[iB];
8 pB2 < B2_pos [(iB + 1)];
9 pB2 ++) {

10 int32_t jB = B2_crd[pB2];
11 int32_t range_j = jB - 10;
12 int32_t jA = range_j;
13 if (range_j >= 10) {
14 break;
15 }
16 if (range_j < 0) {
17 continue;
18 }
19 int32_t pA2 =
20 iA * A2_dimension + jA;
21 A_vals[pA2] = B_vals[pB2];
22 }
23 }

Figure 6-9: Code generated for regular iteration (left) and range iteration (right) of
a CSR matrix.

Each tensor in an expression can specify its own range for the iteration over a

dimension. However, ranges over the same dimension are required to have the same

size. This ensures proper coiteration across tensors which define different ranges for

the same dimension. Figure 6-10 shows an example of coiteration over different index

ranges for a matrix addition operation.

Slice Index Notation. We can support slice index notation as described in sec-

tion 4.3.2 as a direct application of ranged dimension iteration. This allows taco to

restrict the range of a tensor dimension to operate on tensors with different dimen-

sion sizes, as well as to reduce the dimensionality of a tensor altogether (figure 6-11).

It also lets us implement sub-tensor value insertion(figure 6-12). Finally, slice index

notation also allows us to extract tensor slices that have a completely different format
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1 // A(i,j) = B(i,j) + C(i,j)
2
3 for (int32_t iB = 0;
4 iB < B1_dimension; iB++) {
5
6
7
8 for (int32_t jB = 0;
9 jB < B2_dimension; jB++) {

10
11
12
13 int32_t pB2 = iB * B2_dimension + jB;
14 int32_t pC2 = iB * C2_dimension + jB;
15 int32_t pA2 = iB * A2_dimension + jB;
16 A_vals[pA2] =
17 B_vals[pB2] + C_vals[pC2];
18 }
19 }

1 // A(i,j) = B(i(0,10),j(5,15 ,3))
2 // + C(i(10,30,2),j(7 ,12))
3 for (int32_t range_i = 0;
4 range_i < 10; range_i ++) {
5 int32_t iA = range_i;
6 int32_t iB = range_i;
7 int32_t iC = range_i * 3 + 5;
8 for (int32_t range_j = 0;
9 range_j < 10; range_j ++) {

10 int32_t jA = range_j;
11 int32_t jB = range_j * 2 + 10;
12 int32_t jC = range_j + 7;
13 int32_t pB2 = iB * B2_dimension + jB;
14 int32_t pC2 = iC * C2_dimension + jC;
15 int32_t pA2 = iA * A2_dimension + jA;
16 A_vals[pA2] =
17 B_vals[pB2] + C_vals[pC2];
18 }
19 }

Figure 6-10: Matrix addition with iteration over distinct dimension ranges.

than the format of the tensor they originated from (fig:slice-format-change).

1 Format dm({Dense ,Dense });
2 Tensor <double > B({10 ,10}, dm);
3

4 Format dv({Dense });
5 Tensor <double > a({10}, dv);
6 Tensor <double > a({10}, dv);
7 B.setFromComponents(b_vals );
8 c.setFromComponents(c_vals );
9

10 // Reduce dimensionality of B for vector addition.
11 IndexVar i, j;
12 a(j) = B(i(3),j) + c(j);

Figure 6-11: Tensor dimension reduction to perform vector addition over a matrix
slice.

1 Format csr({Dense ,Compressed });
2 Tensor <double > A({100 ,100} , csr);
3 Tensor <double > B({10 ,10}, csr);
4 A.setFromComponents(b_vals );
5 B.setFromComponents(c_vals );
6

7 // Insert B as a subtensor to A
8 IndexVar i, j;
9 A(i(0,10),j(50 ,60)) = B(i,j);

Figure 6-12: Tensor sub-tensor insertion.

Tensor Component Access. Ranged dimension iteration also lets us generate code

to implement the tensor component access behavior provided by the at method or
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1 Format csf({Dense ,Compressed ,Compressed });
2 Tensor <double > A({20 ,100 ,20} , csf);
3

4 Format dm({Dense ,Dense });
5 Tensor <double > B({20 ,20}, dm);
6 A.setFromComponents(b_vals );
7

8 // Extract slice of A with different format
9 IndexVar i, j, k;

10 B(i,j) = A(i, k(10), j);

Figure 6-13: Accessing a tensor slice and changing its format.

via ScalarAccess objects, as described in section 4.1.3. Access to the value stored at

a specific tensor coordinate location can be implemented by restricting the iteration

range of all dimensions on the target tensor to a specific tensor coordinate (figure 6-

14).

1 // Value access expressed as index notation:
2 // x = A(i(3), j(5))
3 double x = A.at(3,5);

Figure 6-14: Implementing tensor value access with ranged dimension iteration.

54



Chapter 7

Related Work

Related work in this area consists of the exploration of different existing systems for

sparse and dense linear and tensor algebra, with a focus on their tensor interfaces and

supported operations.

Dense and sparse linear and tensor algebra systems There exists a number of

linear and tensor algebra libraries, each of which provides a different set of methods

and operations which can be used to interact with tensors. Some of the most popular

libraries for computing on sparse matrices and tensors are Eigen [10], MATLAB [4],

Julia [6], TensorFlow [1], MKL [11] and PETSc [5]. MATLAB, Eigen, and Julia are

general systems that support all basic linear algebra operations; however, their sparse

matrix formats are limited. PETSc targets supercomputers and supports distributed

and blocked matrix formats. TensorFlow is a recent machine learning framework

developed by Google where dense (and some sparse [9]) tensors are passed between

tensor computation kernels in a dataflow computation. Intel MKL is a math pro-

cessing library for C and Fortran that is heavily optimized for Intel processors. The

proposed API draws in particular from the set of features available in Eigen’s and

MATLAB’s Tensor Toolbox interfaces.

Eigen Eigen is a C++ linear algebra library which has become popular due to its

high performance and relative ease of use, and it is used in many large-scale projects

such as Google’s TensorFlow [1]. It supports a robust set of dense linear algebra
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operations including linear solvers, eigenvalue finders, a variety of factorizations and

decompositions, among other. Eigen also supports many sparse linear algebra opera-

tions with a custom column sparse column (or Row) (CSC/CSR) format which allows

for faster amortized random value insertion.

Eigen provides multiple ways to initialize matrix values. Users can specify values

one at a time by inserting the values one after the other. They can also declare all

the matrix values at matrix initialization via the so-called comma-initializer syntax,

in which the whole list of coma-separated values is presented upon matrix creation.

The most relevant initialization form provided by Eigen is their setFromTriplets

method, which allows users to provide the values of a matrix in the form of a list of

components (or Triplets in Eigen). Having access to the full list of non-zeros allows

Eigen to efficiently construct CSR/CSC data structures, and users can additionally

provide handy duplicate-element policies for any repeated input value coordinates.

Other useful interface characteristics include:

∙ component access and modification via overloaded parenthesis operators.

∙ Matrix resizing and reshaping.

∙ Data mapping into a Matrix. Eigen provides a Map class which allows users to

conceptually map a Matrix (or Vector) to an existing array of data. This allows

users to use Eigen’s interface to access non-Eigen data structures with little to

no overhead. Map can also be used to implement views to a matrix (e.g. to

implement matrix reshaping or slicing.)

∙ Access to matrix subsections via blocks and slices.

MATLAB Tensor Toolbox The MATLAB Tensor Toolbox is an early system for

sparse tensors that supports many tensor operations with the coordinate format and

other formats for factorized tensors [4]. It implements a number of sparse tensor

factorization algorithms in addition to supporting primitive operations on general

(unfactorized) sparse and dense higher-order tensors.
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The MATLAB Tensor Toolbox provides a similar set of methods to interact with

tensors as Eigen does with Matrices. It implements multiple value initialization rou-

tines,component access via overloaded parenthesis operators, matrix reshaping, slicing

and blocking, among others. In particular, the Tensor Toolbox introduces the notion

of performing block and slice accesses via operator parenthesis overloading, enables

very simple and concise notation for expressing blocks and slices (This differs from

Eigen, where slice functionality is implemented with Map, and blocks have their own

block method.)
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Chapter 8

Discussion

In this section we discuss the implications of our work in this thesis, and we give

insight into some of the challenges motivation behind the design of the new taco API.

Work on a new API was motivated by user feedback regarding the difficulty of

using the first release of taco as a tensor library. Compiler methods often make code

complicated and too verbose. Additionally, the first taco API lacked important tensor

functionality. The new API was desiged with the following goals:

∙ Simplify taco syntax by making compiler method calls optional

∙ Provide common tensor algebra methods and notation, such as value access via

tensor indexing.

∙ Make taco syntax similar to other libraries to increase code portability between

them.

∙ Hide the taco compiler from the user to make the library easier to use, and

reduce the barrier of entry for new users.

Tensor Value Insertion. The new API introduces setFromComponents as a new

method to insert values to a tensor. The inclusion of this method was a source of

debate, as insert can be used to achieve equivalent behavior. Ultimately, we be-

lieve setFromComponents and insert provide functionality that will be convenient
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in different scenarions. insert is meant to ease the scripting process in taco; in-

sertion via ScalarAccess objects provides convenient syntax for users to test and

try out different functionality, inserting tensor values by hand. On the other hand,

setFromComponents provides a mechanism to divide the process of fetching tensor

data and inserting it to a tensor. Users can write routines to extract tensor data from

any backend, and then insert it all at once. Furthermore, specifying a duplicate value

policy can make the overall data fetching process simpler.

ScalarAccess and operator overloading. As part of the new API, we wanted to

allow indexing notation for tensor value access in addition to tensor index notation.

However, the C++ limitations on operator overloading and template metaprogram-

ming quickly became a roadblock for this feature.

We first considered introducing overloading operator[] to achieve indexing syn-

tax similar to python’s numpy [], but C++ limits the number of arguments of

operator[] to 1, as the C and C++ standard indexing conventions assume a nested

style of indexing appropriate for multidimensional array access. Our next option

was to use operator() instead, as it allows for multiple inputs. Template variadic

arguments are required to overload operator() to take in a variable number of ar-

guments. However, the template variadic argument interface does not provide any

sort of built-in type-checking mechanism, which makes it impossible to distinguish

between variadic arguments of different types for template specialization.

We eventually solved this limitation by abusing C++ SFINAE techniques to force

operator() specialization. Nevertheless, this problem illustrates how domain specific

language development pushes the limit of what existing languages are capable of

expressing.

ScalarAccess vs read/write methods. In the new API ScalarAccess objects

enable component insertion and access with coordinate indexing notation, which

enable clean and elegant syntax for performing these actions. However, the API

still provides regular insert and at methods. The reason why insert and at are

important is because ScalarAccess objects are not available for the TensorBase
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class. Since ScalarAccess allow direct insertion and access with minimal syntax,

they must be templatized on the tensor type. Enabling ScalarAccess objects for

TensorBase objects would require providing input template parameters to the over-

loaded operator(). This is possible, but the notation for calling operator() with

template parameters is complex and ugly, so we decided to keep insert and at as

the main methods of interaction with TensorBase objects.

Block Formats. Taco is capable of representing block formats using higher order

tensors. The new API formalizes this notion with the introduction of block formats.

Block formats are therefore not technically required, as they do not extend the set of

functionality provided by taco. After all, block formats are just a layer of abstraction

on top of tensors of higher dimensionality. The main motivation for introducing block

formats is to make blocking more intuitive from a user stand point.

Aside from user convenience, block formats extend the notion of tensor formats

in taco. Before, tensors were grouped by the number of modes in their formats, but

now even tensors with the same number of dimensions can be stored as formats with

a completely different number of modes and mode formats. By continuing to extend

the notion of formats, it might be possible to achieve a completely new set of tensor

optimizations.

The Lazy Execution Framework. We introduce the lazy execution framework

and the tensor state machine as a mechanism to hide compiler methods from the

user. However, there exists easier ways to achieve this. For example, it would be

really simple to execute tensor expressions the moment they are defined, just like in

traditional libraries. One reason to not do this is that delaying execution can lead to

performance savings if the result of an operation is never used. The real motivation

for our decision however, is that taco is at its core designed to have a scheduling

language, allowing users to change the way in which a computation is performed

without affecting the resulting tensor. In future taco releases, after a tensor expression

is defined the user will be able to command modifications to the tensor computation

which should be taken into consideration during expression compilation. However, it
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is impossible to predict when a user will specify additional scheduling commands, so

delaying execution until the result is requested is the only way to ensure there will be

no more scheduling commands added to the operation. Some scheduling constructs

are already available in taco, such as adding workspaces [13] to speed up tensor

operations, and the taco development team intends to add more.

Tensor Data Representation. In Chapter 6 we describe how databuffers in the

Tensor class can be though of as COO tensors that can be used as input for code

generated by taco. This turned out to be a powerful idea which enables us to au-

tomatically generate the implementation of different tensor API methods for any

format supported by taco. We also explored the idea of using multiple storage ob-

jects to represent a single tensor during larger tensor expressions to save up the costs

of materializing the operand tensors.

We use a data buffer to amortize the cost of inserting values via operator+=, as

well as inserting values via insert. By using not one, but two COO data buffers, we

can combine this techniques to amortize both kind of insertions simultaneously, using

multiple data structures to represent a single tensor. Using different combinations of

data structures can be explored in the future to achieve improved performance for a

number of different tensor operations, as well as to enable functional programming

in taco, in which expressions can be nested into each other to generate single kernels

for large compound tensor expressions.
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Chapter 9

Conclusion

We have described and implemented a new API for the taco library that improves

and extends the functionality available to taco. We presented a lazy execution frame-

work implemented as a tensor state machine that hides compiler methods from the

user behind the tensor abstraction. We then introduce extensions to the taco code

generation algorithm that let us automatically generate the implementation of dif-

ferent API methods and functionality such as tensor packing, value insertion, value

access, and slice index notation. Our API provides a more complete set of tools that

enables users to use the taco library with ease. One major implication of the API

is that it makes taco syntax similar to traditional compiler-free libraries, by hiding

all compiler functionality behind a user friendly API. This means that users have ac-

cess to a familiar-looking library with extensive compiler-enabled functionality. The

introduction of block formats makes it easier for users to understand how block op-

erations are achieved in taco. In addition, the linear algebra API makes porting code

from other libraries easier, and will hopefully help draw in users who do not need

higher dimensionality tensors, as linear algebra notation is more common than index

expressions. Finally, the introduction of compatibility with Eigen will dramatically

increase the number of tools readily available to users when using taco.

Future work includes extending taco’s API to allow users to exploit taco’s code

generation capabilities with custom user-defined behavior. For example, the taco API

could provide a apply method, which takes as input a function pointer, and generates
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code which iterates over the tensor and applies the specified function to each tensor

component. This apply method could be used to implement a large number of new

operations such as:

∙ Element-wise operations: applying a mathematical operation (such as sin, cos,

modulo, floor, ceiling, etc) to each tensor value. This is functionality that is

notably currently missing from taco.

∙ Aggregation operations: implementing aggregation operators directly within

the iteration loops generated by taco to find average, count, max, min, sum,

etc.

∙ Other: users could bake application specific code into taco generated code,

implement custom iterators, etc.

This could be further extended to allow users to specify custom operations between

multiple tensors. Another direction of future work is to extend taco compatibility to

other C++ libraries such as MKL to extend the range of features easily accessible

from taco. The code generation algorithm may also be extended to implement more

API methods and functionality such as tensor printing, and most notably file IO

operations to read and write tensors in files.
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Appendix A

Tensor API Documentation

In this appendix we provide an API instruction manual for the different taco C++

objects relevant for this thesis.

A.1 Coordinate

Coordinate is a class representing a tensor multidimensional coordinate.

Template Parameters

size_t Order. The order, or number of dimensions in the coordinate.

typename Type. The integral Type of the coordinates.

Member Functions

(Constructor) Construct Coordinate

operator[] Access coordinate

operator

std::vector<int>
Cast Coordinate to coordinate vector

order Return Coordinate order
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A.1.1 Member Functions

(Constructor)

Constructs a Coordinate, initializing its contents depending on the constructor version

used:

empty constructor (default constructor) Constructs an empty Coordinate.

coordinate constructor Constructs a coordinate with its Order dimensions pop-

ulated.

Parameters

coordinates. A variadic argument of type Type. The constructor receives a variable

number of dimensions which must match the order of the coordinate.

operator[]

Returns a reference to the coordinate at position n in the vector container.

Parameters

n. Integral position of a coordinate element in the container. Notice that the first

coordinate element has a position of 0.

Return Value

The Type coordinate value at the specified position in the Coordinate.

operator std::vector<int>

Casting operator to a vector object. Returns a vector representation of the coordinate.

Return Value

An std::vector<int> of size Order containing the coordinate elements in the

container.

order

Return the order of the coordinate.

Return Value

The size_t order of the Coordinate object.
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A.2 Component

the Component class allows the user to represent tensor components consisting on a

tensor coordinate and its associated value.

Template Parameters

size_t Order. The order, or number of dimensions in the coordinate.

typename CType. The Type of the component value.

Member Functions

(Constructor) Construct Component

coordinate Return component coordinate

value Return component value

A.2.1 Member Functions

(Constructor)

Constructs a Component, initializing its contents depending on the constructor ver-

sion used:

empty constructor (default constructor) Constructs an order 0 component

with value 0.

coordinate/value constructor Constructs a coordinate with its coordinate and

value specified.

Parameters

coordinate. Coordinate<Order> the coordinate of the component

value. CType value stored at the component.

coordinate

Returns the Coordinate object corresponding to the Component.

Return Value

The Coordinate<Order> coordinate of the component.
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value

Returns the Ctype value stored at the Component.

Return Value

The CType value of the component.

A.3 IndexVar

Index variables are used to index into tensors in index expressions, and they represent

iteration over the tensor modes they index into.

Member Functions
(Constructor) Construct IndexVar

getName Return indexVar name

operator() Return RangeIndexVar

A.3.1 Member Functions

(Constructor)

Constructs an IndexVar, initializing its contents depending on the constructor version

used:

empty constructor (default constructor) Constructs an index variable with

automatically assigned name.

name constructor Constructs an index variable with specified name.

Parameters

name. string name of the index, which is used to represent the indexVar during

code generation.

getName

Returns the name of the IndexVar.

Return Value

The string name of the IndexVar.
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operator()

Creates a RangeIndexVar associated with the creator index variable. The generated

RangeIndexVar iterates over the same dimension as this IndexVar, but additionally

specifies a tensor range to which to limit the iteration.

Parameters

start_bound. int index at which to begin the iteration range.

end_bound. int index at which to end the iteration range.

stride. int the iteration stride. Increment by which the iteration index is incre-

mented at every iteration step.

shift. int the iteration shift. Increment by which the iteration range should be

shifted within the corresponding dimension.

Example Usage

1 IndexVar i;
2

3 // index var iterating over the indices 2-4 of dimension i
4 RangeIndexVar i1 = i(2,5);
5

6 // index var iterating over every other index
7 // bewteen 10 and 20 of dimension i
8 RangeIndexVar i2 = i(10 ,20 ,2);
9

10 // index var masking dimension indices
11 // outside of the 2-4 index range.
12 RangeIndexVar i3 = i(2,5,1,0);

A.4 RangeIndexVar

Index variable used to iterate over a specified range of a tensor dimension in an index

expression

Inherits from IndexVar.

Member Functions
(Constructor) Construct RangeIndexVar

startBound Return the index range start bound.

endBound Return the index range stride.

stride Return the index range start bound.
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A.4.1 Member Functions

(Constructor)

Constructs a RangeIndexVar, initializing its contents. RangeIndexVar objects require

specifying an iteration range and stride.

Parameters

start_bound. int index at which to begin the iteration range.

end_bound. int index at which to end the iteration range.

stride. int the iteration stride. Increment by which the iteration index is incre-

mented at every iteration step.

startBound

Returns the start bound of the iteration range.

Return Value

The int start bound of the RangeIndexVar.

endBound

Returns the end bound of the iteration range.

Return Value

The int end bound of the RangeIndexVar.

stride

Returns the stride of the iteration.

Return Value

The int stride of the RangeIndexVar.

A.5 ModeFormat

The type of a mode defines how it is stored. For example, a mode may be stored as

a dense array, a compressed sparse representation, or a hash map. taco defines Mod-
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eFormats for the user, but new formats can be defined by extending ModeTypeImpl.

Member Functions

(Constructor) Construct ModeFormat

operator()
Instantiates a variant of the mode format with differ-

ently configured properties.

getName Return the mode format name.

hasProperties Return true if the mode format has the given properties.

isFull Returns true if the mode format has the full property.

isOrdered
Returns true if the mode format has the ordered prop-

erty.

isUnique
Returns true if the mode format has the unique prop-

erty.

isBranchless
Returns true if the mode format has the branchless

property.

isCompact
Returns true if the mode format has the compact prop-

erty.

hasCoordValIter
Returns true if a mode format has the coordinate value

iteration capability.

hasCoordPosIter
Returns true if a mode format has the coordinate posi-

tion iteration capability.

hasLocate Returns true if a mode format has the locate capability.

hasInsert Returns true if a mode format has the insert capability.

hasAppend
Returns true if a mode format has the append capabil-

ity.

hasFixedSize Returns true if a mode format is a fixed size format.

size Returns the fixed size of the format.

defined Return true if the mode format is defined.
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A.5.1 Member Functions

(Constructor)

Constructs a ModeFormat, initializing its contents depending on the constructor ver-

sion used:

empty constructor (default constructor) Constructs an undefined mode for-

mat.

name constructor Constructs a new mode format.

Parameters

implementation. ModeTypeImpl, a predefined mode format implementation.

operator()

Instantiates a variant of the mode format with differently configured properties, de-

pending on the constructor version used:

property list operator() Constructs a mode format with the specified proper-

ties.

format size operator() Constructs a new mode format with a fixed mode size.

Parameters

property list. vector<Property> list of properties to instantiate a mode format

with.

size. int mode format size. Fixed size mode formats are used to define block

tensor formats.

Example Usage

1 ModeFormat FixedDense = ModeFormat ::Dense (5);

getName

Returns the name of the ModeFormat.

Return Value

The string name of the ModeFormat.
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hasProperties

Returns true if the mode format has the given properties.

Parameters

property list. vector<Property> list of properties to check for.

Return Value

The bool true if the ModeFormat contains all the specified properties.

hasFixedSize

Returns True if the ModeFormat has a fixed size.

Return Value

The bool true if the ModeFormat has a defined fixed size.

size

Returns the ModeFormat’s fixed size. Raises an error if the modeformat does not

have a fixed size.

Return Value

The int size of the mode format.

defined

Returns True if the ModeFormat has been defined. An undefined mode type can be

used to indicate a mode whose format is not (yet) known.

Return Value

The bool true if the ModeFormat is defined.

A.6 Format

A Format describes the data layout of a tensor, and the sparse index data structures

that describe locations of non-zero tensor components.

Member Functions
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(Constructor) Construct Format.

getOrder Return the number of modes in the format.

getModeFormats Return the the storage types of the modes.

getModeFormatPacks
Return the storage formats of the modes, with modes

that share the same physical storage grouped together

getModeOrdering Return the ordering in which the modes are stored.

isBlocked Return true if the Format is a Block format

numBlockLevels Return the number of nested block levels in the format

getBlockSizes Return the fixed-sizes of ModeFormats in the format.

getDimensionFree

SizeBlock

returns the block which contains each dimension’s free

size

A.6.1 Member Functions

(Constructor)

Constructs a Format, initializing its contents depending on the constructor version

used:

empty constructor (default constructor) Constructs a format for a 0-order

tensor (a scalar).

standard constructor Constructs a tensor format whose modes have the given

mode storage formats.

ordered format constructor Constructs a tensor format where the modes have

the given mode storage formats and modes are stored in the given sequence.

block format constructor Constructs a tensor format whose modes have the

given mode storage formats, and the mode formats have been grouped into blocks.

Parameters

mode formats. vector<ModeFormat>, a list of mode formats. The number of

mode formats in the input determines the dimensionality of the format.

blocked mode formats. vector<vector<ModeFormat», a list of mode format

groupings. Each grouping represents a block or block level. All groupings are required
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to be the same size. The number of blocks in the input determines the dimensionality

of the format.

Blocked formats create a level of abstraction in which each dimension of a tensor

is divided into multiple modes. For each dimension, there must be exactly one block

with non-fixed size.

mode ordering. vector<int>, a mode format ordering. The mode stored in

position i of the input mode formats is specified by modeOrdering[i].

Example Usage

1 // 4-tensor format
2 Format ({Dense ,Dense ,Compressed ,Compressed });
3

4 // 4-tensor format with custom mode ordering
5 Format ({Dense ,Dense ,Compressed ,Compressed}, {1,0,3,2});
6

7 // block 2-tensor
8 Format ({{ Compressed ,Compressed },{Dense(8), Dense (8)}});
9

10 // block 2-tensor with custom mode ordering
11 Format ({{ Compressed ,Compressed },{Dense(8), Dense (8)}}{1 ,0 ,3 ,2});

getOrder

Returns the number of modes in the format.

Return Value

n. int number of modes in the format.

getModeFormats

Returns the storage types of the modes. The type of the mode stored in position i is

specifed by element i of the returned vector.

Return Value

mode formats. vector<ModeFormat> the format’s mode formats.

getModeFormatPacks

Get the storage formats of the modes, with modes that share the same physical storage

grouped together.
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Return Value

mode format packs. vector<ModeFormatPack> the format’s mode format packs.

getModeOrdering

Return the ordering in which the modes are stored. The mode stored in position i is

specifed by element i of the returned vector.

Return Value

mode ordering. vector<int> the format’s mode ordering.

isBlocked

Return true if the format is a block format.

Return Value

block format. bool.

numBlockLevels

Return the number of nested block levels in the format.

Return Value

block levels. int number of blocks in the format.

getBlockSizes

Gets all the block fixed-sizes.

A zero size is given for the free block dimension. Each tensor dimension contains

exactly one free block size, which is determined at tensor instantiation.

Return Value

block sizes. vector<vector<int» a list of dimension fixed sizes for each block in

the format.
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getDimensionFreeSizeBlock

For each dimension in the format, returns the block which contains the dimension’s

free size.

free block dimensions. vector<int>. Entry i corresponds to the block that con-

tains a free size for dimension i. Each dimension has exactly one free size.

A.7 ScalarAccess

Template Parameters

typename CType. The Type of the component value.

Member Functions

(Constructor) Construct ScalarAccess

operator= Insert value to the tensor coordinate.

operator CType Return the value stored at the tensor coordinate.

A.8 TensorBase

TensorBase is the super-class for all tensors. You can use it directly to avoid tem-

plates, or you can use the templated Tensor<T> that inherits from TensorBase.

Member Types

const_iterator a random access iterator to const tensor values.

Content stores tensor data and metadata.

Member Functions

(Constructor) Construct TensorBase

Metadata Methods
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setName Set the name of the tensor

getName Return the name of the tensor

getOrder Return the order of the tensor (the number of modes)

getDimension Return the dimension of a tensor mode

getDimensions Return a vector with the dimension of each tensor mode

getComponentType Return the type of the tensor components

getFormat Return the format the tensor is packed into

setStorage Set the tensor’s storage

getStorage Return the tensor’s storage

Write Methods

insert Insert a value into a tensor coordinate.

setFromComponents
Insert the Components stored in a container to the ten-

sor.

Read Methods

at Return the value stored at the specified coordinate.

iterator
Return an iterator object to iterate over the values of

the tensor.

iteratorTyped Return an iterator with typed coordinates.

Access Methods

operator() Return an Access object to write index notation.

Compiler Methods
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pack Pack tensor into the given format.

compile Compile the tensor expression.

assemble
Assemble the tensor storage, including index and value

arrays.

compute
Compute the given expression and put the values in the

tensor storage.

evaluate Compile, assemble and compute as needed.

needsPack Returns true if the Tensor needs to be packed.

needsCompile Returns true if the Tensor needs to be compiled.

needsAssemble Returns true if the Tensor needs to be assembled.

needsCompute Returns true if the Tensor needs to be computed.

A.8.1 Member Types

Content

const_iterator

A.8.2 Member Functions

(Constructor)

Constructs a TensorBase, initializing its contents depending on the constructor ver-

sion used:

empty constructor (default constructor) Constructs a scalar.

datatype constructor Constructs a scalar with specified data type.

format constructor Constructs a tensor with the given dimensions and format.

Parameters

name. string tensor name.

data type. DataType the type of the tensor values.

format. Format tensor format.

dimensions. vector<int> tensor dimensions.
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setName

Set the name of the tensor. Tensor name is used during code generation, and during

tensor print routines.

Parameters

name. string tensor name.

getName

Return the name of the tensor.

Return Value

name. string tensor name.

getOrder

Return tensor order.

Return Value

order. int tensor order.

getDimension

Return the dimension of a tensor mode.

Parameters

mode. int tensor mode to get the dimension from.

Return Value

dimension size. int tensor dimension size.

getDimensions

Return a vector with the dimension of each tensor mode.

Return Value

dimensions. vector<int> tensor dimensions.
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getComponentType

Return the type of the tensor components.

Return Value

type. DataType the type of the values stored in the tensor.

getFormat

Return the tensor format describing the data structure of the tensor values.

Return Value

tensor format. Format

setStorage

Set the storage of the tensor. The TensorStorage object stores the tensor’s data

structure and values.

Parameters

storage. TensorStorage a storage object.

getStorage

Returns the storage for this tensor. Tensor values are stored according to the format

of the tensor.

Return Value

storage. TensorStorage containing tensor values.

insert

Insert a value into the tensor.

Template Parameters

tensor type. CType the type of the tensor.

Parameters

coordinate. Coordinate<Order> the tensor coordinate to which to insert the

value. The coordinate’s order must match the tensor order.
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value. CType the value to be inserted.

setFromComponents

Fill the tensor with the list of components defined by the iterator range (begin, end).

Template Parameters

iterator type. Iterator a Component iterator type.

Parameters

iterator. Iterator an iterator containing the input tensor components. The

iterator must iterate over Component objects.

at

Return the value stored at a tensor coordinate.

Template Parameters

tensor type. CType the type of the tensor.

Parameters

coordinate. Coordinate<Order> the coordinate from which to read a tensor value.

The coordinate Order must match the tensor order.

iterator

Returns an iterator object which can be used to iterate over the tensor values. The

iterator is a typed wrapper for TensorBase that implements the begin and end

iteration methods.

Template Parameters

tensor type. CType the type of the tensor.

Return Value

iterator. iterator_wrapper<int,CType>, an iterator over the values of TensorBase.

iteratorTyped

Returns an iterator object which can be used to iterate over the tensor values. The

iterator is a typed wrapper for TensorBase that implements the begin and end
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iteration methods.

Template Parameters

tensor type. CType the type of the tensor.

coordinate type T the type used to store coordinate values.

Return Value

iterator. iterator_wrapper<T,CType>, an iterator over the values of TensorBase.

operator()

Create index expression that represents a tensor access, such as A(i,j)). Access

expressions can also be assigned an expression, which happens when they occur on

the left-hand-side of an assignment.

Template Parameters

index variables. IndexVars... a variadic template argument to have a variable

number of index variables as input.

Parameters

index variables. IndexVars... a sequence of index variables to denote iteration

over the tensor. The number of input index variables must be equal to the order of

the tensor.

Return Value

access. Access, an access object which can be used to declare index expressions

involving the tensor.

pack

Pack tensor into the given format. Compiles the values inserted to the tensor, and

packs them into a data structure as described by the tensor’s format.

compile

Compile the tensor expression. Takes an index expression assigned to the tensor, and

generates code to assemble the result data structure of the operation, and to compute

the operation.

85



assemble

Assemble the tensor storage, including index and value arrays. Generate the data

structure in which the result of the tensor computation will be stored.

compute

ompute the given expression and put the values in the tensor storage.

A.9 Tensor

The templetized version of TensorBase, that knows its type and order at compile

time. Type and order are used to improve the performance of different tensor opera-

tions.

Template Parameters

size_t Order. The order, or number of dimensions in the tensor.

typename CType. The Type of tensor values.

Member Functions
(Constructor) Construct Tensor

transpose
Creates a tensor with the values of this tensor trans-

posed

begin Return the start pointer of an iterator through tensor

beginTyped
Return the typed start pointer of an iterator through

tensor

end Return the end pointer of an iterator through tensor

endTyped
Return the typed end pointer of an iterator through

tensor

operator()
Return a ScalarAccess object to perform tensor value

insertion and access.
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A.9.1 Member Functions

(Constructor)

Constructs a Tensor, initializing its contents depending on the constructor version

used:

empty constructor (default constructor) Constructs a scalar.

value constructor Constructs a scalar with specified value.

format constructor Constructs a tensor with the given dimensions and format.

TensorBase constructor Constructs a Tensor using the contents of a Tensor-

Base.

Parameters

name. string tensor name.

format Format tensor format.

dimensions vector<int> tensor dimensions.

transpose

Creates a tensor corresponding to the transpose of this tensor.

begin

Returns an iterator pointing to the first element in the tensor.

Return Value

iterator. const_iterator<int,Ctype>

beginTyped

Returns an iterator pointing to the first element in the tensor.

Template Parameters

coordinate type. T The integral type used to store coordinate dimensions.

Return Value

iterator. const_iterator<T,Ctype>

87



end

Returns an iterator referring to the past-the-end element in the tensor container.

Return Value

iterator. const_iterator<int,Ctype>

endTyped

Returns a typed iterator referring to the past-the-end element in the tensor container.

coordinate type. T The integral type used to store coordinate dimensions.

Return Value

iterator. const_iterator<T,Ctype>

operator()

Create a ScalarAccess object to perform tensor value insertion or access. Scalar

access objects provide a window to a tensor coordinate that enables tensor interaction

with indexing syntax.

Template Parameters

coordinate integers. Ints... a variadic template argument to have a variable

number of integers as input.

Parameters

indices. Ints... a sequence of integer indices representing the coordinate being

accessed. The number of input integers must be equal to the order of the tensor.

Return Value

scalar access. ScalarAccess, an access object which can be used to interact with

a tensor value at a specified coordinate.

Example Usage

1 Tensor <2, double > A({5,5}, Format ::csr);
2

3 // insert a value with ScalarAccess
4 A(0,0) = 2.0;
5

6 // read a value with ScalarAccess
7 double x = A(0,0);
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Appendix B

Lazy Execution Example

In this appendix we provide a lazy execution sample piece of code (figure B-1), along

with its corresponding dependency diagram (figure B-2) and sequence diagram (fig B-

3). This example complements the reading in chapter 5.

1 Format csr({Dense ,Compressed });
2 Tensor <double > A({10 ,10}, csr);
3 Tensor <double > B({10 ,10}, csr);
4 Tensor <double > C({10 ,10}, csr);
5 Tensor <double > D({10 ,10}, csr);
6 Tensor <double > E({10 ,10}, csr);
7

8 B.setFromComponents(b_vals );
9 D.setFromComponents(d_vals );

10 E.setFromComponents(e_vals );
11

12 IndexVar i, j, k;
13 C(i,j) = D(i,j) + E(i,j);
14 A(i,j) = B(i,k) * C(k,j);
15

16 // Value insertion triggers
17 // D.pack ();
18 // E.pack ();
19 // C.compute ();
20 E(0,0) = 2.0;
21

22 // Print statement triggers
23 // B.pack ();
24 // A.compute ();
25 std::cout << A << std::endl;

Figure B-1: Code sample commented with lazy execution compiler method logical
placement.
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Figure B-2: Tensor dependency diagram for the computation in figure B-1. Black
arrows indicate tensor and operation dependencies. Red dashed arrows indicate com-
putation triggers.

Figure B-3: Tensor sequence diagram for the computation in figure B-1.
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