pytaco.exp
- pytaco.exp(e1)
Calculate the exponential of all elements in an index expression.
The index expression must have a floating point type. If necessary, a user may
cast()
the input expression before applying the function as shown insqrt()
.This must be assigned to a tensor for the computation to be performed.
- Parameters
- e1: index_expression
Input index expression
- Returns
- exp_expr: index_expression
An index expression representing the element wise exponent of the input expression.
Examples
We show computing the standard softmax function as an example.
>>> import pytaco as pt >>> t = pt.as_tensor([[4, 0.3], [2, 7]]) >>> t = pt.as_type(t, pt.float32) >>> exp_sum = pt.tensor([t.shape[0]], pt.dense)
>>> i, j = pt.get_index_vars(2) >>> exp_sum[i] = pt.exp(t[i, j]) # sum across the rows and exp >>> soft_max_t = pt.tensor(t.shape, pt.dense) >>> soft_max_t[i, j] = pt.exp(t[i, j]) / exp_sum[i] # divide each row by its sum >>> print(soft_max_t.to_array()) [[0.975873 0.02412702] [0.00669285 0.9933072 ]]